
Sketch of Lecture 7 Wed, 1/24/2024

Example 50. One thing that makes the one-time pad difficult to use is that the key needs to be
the same length as the plaintext. What if we have a shorter key and just repeat it until it has the
length we need?

That's essentially the Vigenere cipher (in a different alphabet).

Solution. Assuming the attacker knows the length of our key (if she doesn't she can just try all possibilities),
this is equivalent to using the one-time pad several times with the same key. That should never be done! Even
using a key twice means that we become susceptible to a ciphertext only attack (see Example 48).

So, repeating the key is a terrible idea. However, the idea to create a longer (random) key out of
a shorter (random) key is good (we will discuss pseudorandom generators next).

Let us emphasize that, in order to be perfectly confidential, the key for a one-time pad must be
chosen completely at random (otherwise, an attacker can make assumptions on the used keys).

Indeed, the need to generate random numbers shows in every modern cipher.

Stream ciphers

Once we have a way to generate pseudorandom numbers, we can use the idea of the one-time
pad to create a stream cipher.
Start with key of moderate size (say, 128 bits).
Use the key k and a PRG (pseudorandom generator) to generate a much longer pseudorandom keystream
PRG(k). Then encrypt Ek(m)=m�PRG(k).
We lost perfect confidentiality. Security relies on choice of PRG (must be unpredictable).

As with the one-time pad, we must never reuse the same keystream! That does not mean that
we cannot reuse the key: we can do that using a nonce: Ek(m)=m�PRG((nonce; k)), where
the seed is produced by combining the nonce and k (for instance, just concatenating them).

The nonce is then passed (unencrypted) along with the message.
To make sure that we never reuse the same keystream, we must never use the same nonce with the same key.
Remark. A nonce can only be used once, as is in its name. Apparently, according to Urban Dictionary, it is also
common as a British insult, roughly equivalent to wanker.

Armin Straub
straub@southalabama.edu

15



How to generate random numbers?

Natural randomness is surprisingly difficult to harness.
You can for instance play around with a Geiger counter but our department is short on these and getting lots of
random numbers is again challenging.

Linear congruential generators

(linear congruential generator) Let a; b;m be chosen parameters.

From the seed x0, we produce the sequence xn+1� axn+ b (modm).

The choice of a; b;m is crucial for this to generate acceptable pseudorandom numbers.
For instance, glibc uses a = 1103515245, b = 12345, m = 231. (This is one of two implementations.) In that
case, each xi is represented by precisely 31 bits. [Note that the choice of m makes this very fast.]
https://en.wikipedia.org/wiki/Linear_congruential_generator

Linear congruential generators (LCG) are easy to predict and must not be used for cryptographic purposes. More
generally, all polynomial generators are cryptographically insecure. They are still used in practice, because they
are fast and easy to implement and have decent statistical properties. (For instance, our online homework is
generated using random numbers, and there is no need for crypto-level security there.)
Statistical trouble. Can you see why the sequences produced by the glibc LCG alternate between even and odd
numbers? (Similarly, other low bits are much less �random� than the higher bits.) Because of this defect, some
programs (and other implementations of rand() based on LCGs) throw away the low bits entirely.
Comment. The particular choices of a and b in glibc are somewhat mysterious. See, for instance:
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand

Example 51. Generate values using the linear congruential generator xn+1� 5xn+3 (mod 8),
starting with the seed x0=6.
Solution. x1� 1, x2� 0, x3� 3, x4� 2, x5� 5, x6� 4, x7� 7, x8� 6. This is the value x0 again, so the
sequence will now repeat. Note that we went through all 8 residues before repeating. Period 8.
Note. Because 8=23 we can represent each xi using exactly 3 bits. Then x1; x2; x3; :::=1;0;3; ::: corresponds
to the bit stream (001 000 011 :::)2.

Example 52. (extra) Observe that the sequence produced by the linear congruential generator
xn+1� axn+ b (modm) must repeat, at the latest, after m terms. (Why?!)

One can give precise conditions on a; b; m to achieve a full period m. Namely, this happens if
and only if gcd (b;m)=1 and a¡ 1 is divisible by all primes (as well as 4) dividing m.

(a) Generate values using a linear congruential generator xn+1� 2xn+1 (mod10), starting with the seed
x0=5. When do they repeat? Is that consistent with the mentioned condition?

(b) What are possible values for a so that the LCG xn+1� axn+ 11 (mod100) has period 100?

(c) glibc uses a= 1103515245, b= 12345, m=231. After how many terms will the sequence repeat?

Solution.

(a) x1� 1, x2� 3, x3� 7, x4� 5. This is the value x0 again, so the sequence will repeat. Period 4.
[The period is less than 10. This is as predicted by the mentioned condition, because a¡1 is not divisible
by 2 and 5.]

(b) We need that a ¡ 1 is divisible by 4 and 5. Equivalently, a � 1 (mod 20). Hence, possible values are
a=1; 21; 41; 61; 81.

(c) Clearly, gcd (b; m) = 1. Also, a¡ 1 is divisible by 4 (and no primes other than 2 divide m). Hence, for
every seed, values repeat only after going through all 231 residues.

Armin Straub
straub@southalabama.edu

16

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand
https://stackoverflow.com/questions/8569113/why-1103515245-is-used-in-rand


Example 53. Let's use the PRG xn+1 � 5xn + 3 (mod 8) as a stream cipher with the key
k=4= (100)2. The key is used as the seed x0 and the keystream is PRG(k) = x1 x2 ::: (where
each xi is 3 bits). Encrypt the message m=(101 111 001)2.
Solution. We first use the PRG with seed x0 = k to produce the keystream PRG(k) = 7; 6; 1; ::: =
(111 110 001 :::)2.
We then encrypt and get c=Ek(m)=m�PRG(k)= (101 111 001)2� (111 110 001)2=(010 001 000)2.
Decryption. Observe that decryption works in the exact same way:
Dk(c)= c�PRG(k)= (010 001 000)2� (111 110 001)2=(101 111 001)2.
Note. The keystream continues as PRG(k) = 7; 6; 1; 0; 3; 2; 5; 4; ::: At this point it repeats itself because we
obtained the value 4, which was our seed. Since the state of this PRG only depends on the value of xn, and there
are 8 possible values for xn, the period 8 is the longest possible. The previous (extra) example gave conditions
on the PRG that guarantee that the period is as long as possible.

Example 54. Can you think of a way in which the numbers produced by a linear congruential
generator differ from truly random ones?
Solution. An easy observation for our small examples is the following: by construction, xn+1�axn+b (modm),
individual values don't repeat unless a full period is reached and everything repeats. Truly random numbers do
repeat every now and then (however, if m is large, then this observation is not exactly practical).
Of course, knowing the parameters a; b; m, the numbers generated by the PRG are terribly predictable.
Knowing just one number, we can produce all the next ones (as well as the ones before). A PRG that is safe for
cryptographic purposes should not be predictable like that! (See next example.)

The next example illustrates the vulnerability of stream ciphers, based on predictable PRGs.

Recall that it is common to know or guess pieces of plaintexts; for instance, every PDF begins with %PDF.

Example 55. Eve intercepts the ciphertext c=(111 111 111)2. It is known that a stream cipher
with PRG xn+1� 5xn+ 3 (mod 8) was used for encryption. Eve also knows that the plaintext
begins with m=(110 1:::)2. Help her crack the ciphertext!

Solution. Since c = m � PRG, we learn that the initial piece of the keystream is PRG = m � c =
(110 1:::)2� (111 1:::)2=(001 0:::)2. Since each xn is 3 bits, we conclude that x1=(001)2=1.
Because the PRG is predictable, we can now recreate the entire keystream! Using xn+1� 5xn+3 (mod8), we
find x2� 0, x3� 3, ::: In other words, PRG=1; 0; 3; :::=(001 000 011 :::)2.
Hence, Eve can decrypt the ciphertext and obtain m = c � PRG = (111 111 111)2 � (001 000 011)2 =
(110 111 100)2.

Armin Straub
straub@southalabama.edu

17


