
Sketch of Lecture 9 Mon, 1/29/2024

Example 61. Suppose we have two PRGs that output bits. The first repeats after 14 bits, the
second after 18 bits. After how many bits do they repeat simultaneously?

What if the two PRGs repeat after 13 and 17 bits instead?
Solution. Note that the first PRG again repeats after 28 bits, after 42 bits and, in general after 14m bits where
m is any positive integer. Likewise, the second PRG repeats after 18m bits where m is any positive integer.
Therefore, both PRGs repeat simultaneously after lcm (14; 18)= 14 � 18

2
= 126 bits.

Review. Here, lcm is the least common multiple. We can always compute the lcm through the Euclidean
algorithm by using lcm (a; b)=

a � b
gcd (a; b)

.

If the two PRGs repeat after 13 and 17 bits instead, then they repeat simultaneously after lcm(13;17)=13 �17=
221 bits.
Comment. Certain cicadas spend more than 99% of their life underground as nymphs and only emerge as adults
for 4-6 weeks. Interestingly, this life cycle is highly synchronized: cicadas of one species in a region appear all at
once. In 2024, �Brood XIII� and �Brood XIX� will co-emerge. These emerge every 17 and 13 years, respectively.
Therefore this co-emergence is a rare event that only happens every 221 years (though, the same thing happened
2015 with two different broods).
https://en.wikipedia.org/wiki/Periodical_cicadas

Example 62. (bonus!) Eventually the output of the baby CSS in Example 63 has to repeat
(though it need not be perfectly periodic; see Example 60). Once it repeats, what is the period?

Note. The state of the system is determined by 3+4+1=8 bits (3 bits for LFSR-1, 4 bits for LFSR-2, and 1
bit for the carry). Hence, there are 28=256 many states. Since the state with everything 0 is again special, that
means that after at most 255 steps our PRG will reach a state it has been in before. At that point, everything
will repeat.

(To collect a bonus point, send me an email within the next week with the period and how you found it.)

Combining two LFSRs to get the CSS (content scramble system)

A popular way to reduce predictability is to combine several LFSRs (in a nonlinear fashion):

Example 63. The CSS (content scramble system) is based on 2 LFSRs and used for the encryption
of DVDs. Before discussing the actual CSS let us consider a baby version of CSS. Our PRG uses
the LFSR xn+3 � xn+1 + xn (mod 2) as well as the LFSR xn+4 � xn+2 + xn (mod 2). The
output of the PRG is the output of these two LFSRs added with carry.
Adding with carry just means that we are adding bits modulo 2 but add an extra 1 to the next bits if the sum
exceeded 1. This is the same as interpreting the output of each LFSR as the binary representation of a (huge)
number, then adding these two numbers, and outputting the binary representation of the sum.

Armin Straub
straub@southalabama.edu

20

https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas
https://en.wikipedia.org/wiki/Periodical_cicadas

If we use (0; 0; 1) as the seed for LFSR-1, and (0; 1; 0; 1) for LFSR-2, what are the first 10 bits
output by our PRG?

Solution. With seed 0; 0; 1 LSFR-1 produces 0; 1; 1; 1; 0; 0; 1; 0; 1; 1; :::
With seed 0; 1; 0; 1 LSFR-2 produces 0; 0; 0; 1; 0; 1; 0; 0; 0; 1; :::
We now add these two:

0 1 1 1 0 0 1 0 1 1 ���
+ 0 0 0 1 0 1 0 0 0 1 ���
carry 1 1

0 1 1 0 1 1 1 0 1 0 ���

Hence, the output of our PRG is 0; 1; 1; 0; 1; 1; 1; 0; 1; 0; :::.

Important comment. Make sure you realize in which way this CSS PRG is much less predictable than a single
LFSR! A single LFSR with ` registers is completely predictable since knowing ` bits of output (determines the
state of the LFSR and) allows us to predict all future output. On the other hand, it is not so simple to deduce
the state of the CSS PRG from the output. For instance, the initial (0; 1; :::) output could have been generated
as (0; 0; :::)+ (0; 1; :::) or (0; 1; :::)+ (0; 0; :::) or (1; 0; :::)+ (1; 0; :::) or (1; 1; :::)+ (1; 1; :::).
[In this case, we actually don't learn anything about the registers of each individual LFSR. However, we do learn
how their values have to match up. That's the correlation that is exploited in correlation attacks, like the one
described next class for the actual CSS scheme.]

Advanced comment. Is the carry important? Yes! Let a1; a2; ::: and b1; b2; ::: be the outputs of LFSR-1 and
LFSR-2. Suppose we sum without carry. Then the output is a1+ b1; a2+ b2; ::: (with addition mod 2). If Eve
assigns variables k1; k2; :::; k7 to the 3 + 4 seed bits (the key in the stream cipher), then the output of the
combined LFSR will be linear in these seven variables (because the ai and bi are linear combinations of the ki).
Given just a few more than 7 output bits, a little bit of linear algebra (mod 2) is therefore enough to solve for
k1; k2; :::; k7.
On the other hand, suppose we include the carry. Then the output is a1+ b1; a2+ b2+a1b1; ::: (note how a1b1
is 1 (mod2) precisely if both a1 and b1 are 1 (mod2), which is when we have a carry). This is not linear in the
ai and bi (and, hence, not linear in the ki), and we cannot use linear algebra to solve for k1; k2; :::; k7 as before.

Example 64. In each case, determine if the stream could have been produced by the LFSR
xn+5�xn+2+xn (mod 2). If yes, predict the next three terms.

(STREAM-1) :::; 1; 0; 0; 1; 1; 1; 1; 0; 1; ::: (STREAM-2) :::; 1; 1; 0; 0; 0; 1; 1; 0; 1; :::
Solution. Using the LFSR, the values 1;0;0;1;1 are followed by 1;1;1;0; ::: Hence, STREAM-1 was not produced
by this LFSR.
On the other hand, using the LFSR, the values 1;1;0;0;0 are followed by 1;1;0;1;1;1;0; ::: Hence, it is possible
that STREAM-2 was produced by the LFSR (for a random stream, the chance is only 1/24=6.25% that 4 bits
matched up). We predict that the next values are 1; 1; 0; :::
Comment. This observation is crucial for the attack on CSS described in Example 65.

Armin Straub
straub@southalabama.edu

21

Example 65. (CSS) The CSS (content scramble system) is based on 2 LFSRs and used for the
encryption of DVDs. Let us indicate (in a slightly oversimplified way) how to break it.

CSS was introduced in 1996 and first compromised in 1999. One big issue is that its key size is 40 bits. Since
240� 1.1 � 1012 is small by modern standards, even a direct brute-force attack in time 240 is possible.
However, we will see below that poor design makes it possible to attack it in time 216.
Historic comment. 40 bits was the maximum allowed by US export limitations at the time.
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States

LFSR-17
17 bits (seed uses 16 bits of key)

¡!1 bit X
mod2

(plus previous carry)

#
1 bit

 ¡1 bit LFSR-25
25 bits (seed uses 24 bits of key)

CSS PRG combines one 17-bit LFSR and one 25-bit LFSR. The bits output by the CSS PRG are the sum of the
bits output by the two LFSRs (this is the usual sum, including carries).
The 40 bit key is used to seed the LFSRs (the 4th bit of each seed is �1�, so we need 16+ 24= 40 other bits).
Here's how we break CSS in time 216:

� If a movie is encrypted using MPEG then we know the first few, say x (6-20), bytes of the plaintext.

� As in Example 59, this allows us to compute the first x bytes of the CSS keystream.

� We now go through all 216 possibilities for the seed of LFSR-17. For each seed:

� We generate x bytes using LFSR-17 and subtract these from the known CSS keystream.

� This would be the output of LFSR-25. As in Example 64, we can actually easily tell if such an
output could have been produced by LFSR-25. If yes, then we found (most likely) the correct seed
of LFSR-17 and now also have the correct state of LFSR-25.

This kind of attack is known as a correlation attack.
https://en.wikipedia.org/wiki/Correlation_attack

Comment. Similar combinations of LFSRs are used in GSM encryption (A5/1,2, 3 LFSRs); Bluetooth (E0, 4
LFSRs). Due to certain details, these are broken or have serious weaknesses; so, of course, they shouldn't be
used. However, it is difficult to update things implemented in hachallengerdware:::

Armin Straub
straub@southalabama.edu

22

https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Export_of_cryptography_from_the_United_States
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack
https://en.wikipedia.org/wiki/Correlation_attack

