Notes for Lecture 4 Wed, 8/28/2024

In the following example, we first proceed like we did when producing a slope field to compute
slopes (and, therefore, tangent lines) of solutions. Indeed, besides the slope 3, we can further
compute further derivatives like 4" or vy’ by differentiating the DE.

Do you recall how y'’ tells us about the curvature of a function y(x)?

Example 16. Consider the DE 2%y’ =1+ xy>. Suppose that y(z) is a solution passing through
the point (2,1).
Important. This is the same as saying that y(z) solves the IVP 22y’ =1 + x33 with y(2) = 1.

(a) Determine y'(2).
(b) Determine the tangent line of y(z) at (2,1).
(c) Determine y”(2).

Comment. Note that this DE is not separable.

Solution.

(a) At the point (2,1) we have z =2 and y = 1. Plugging these values into the differential equation, we get
4y’ =1+2-13 =3 which we can solve for y’ to find y’:z.
Since y’ is short for y'(z) = y'(2), we have found y’(2) :%

(b) The tangent line is the line through (2, 1) with slope % (computed in the previous part).

From this information, we can immediately write down its equation in the form y = %(aj —2)+1.

(c) To get our hands on y'/(2), we can differentiate (with respect to x) both sides of x%y’ =1+ zy5.
Applying the product rule, we have %x%y’(ac) = 2xy'(z) + 2%y"(x) = 2zy’ + z%y" as well as
L1t ay(@)?) =y(@)3+z-3y(x)? - y'(x) =y + 3xy%y’.

Thus 2zy’ + 2%y = y2 + 3zy?y’. To find y”/(2), we plugin =2, y=1, y’:%
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This results in 2~2~%+4y”:1+3~2o1~% or 3+4y”:171. It follows that y'/ = 5"

. . 1,1 . . .
Comment. Alternatively, we can rewrite the DE as y’:?—i—;yg and then differentiate. Do it!

5
Comment. Do you recall from Calculus what it means visually to have y”z%?

[Since y”/ > 0 it means that our function is concave up at (2, 1). As such, its graph will lie above the
tangent line.]

Comment. Note that we could continue and likewise find y’”/(2) or higher derivatives at = 2. This is
the starting point for the power series method typically discussed in Differential Equations II.

Solving DEs: Separation of variables, cont’d

In general, separation of variables solves y’'= g(x)h(y) by writing the DE as ﬁdy: g(z)dx.

! % = g(x) is indeed equivalent to fﬁdy: [ g(x)dz+C. Why?! (Apply % to the integrals...)

h(y)

Note that

Example 17. Solve the IVP y' = —%, y(0) =—3.

Comment. Instead of using what we found earlier in Example 14, we start from scratch to better illustrate the
solution process (and how we can use the initial condition right away to determine the value of the constant of
integration).
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Solution. We separate variables to get ydy = —xdx.
Integrating gives %yQ = —%xQ + C, and we use y(0) = —3 to find %(—3)2 =0+ C so that C'= %.
Hence, 22 + 42 =9 is an implicit form of the solution.

Solving for y, we get y = —1/9 — x2 (note that we have to choose the negative sign so that y(0) = —3).

Comment. Note that our solution is a local solution, meaning that it is valid (and solves the DE) locally around
2 =0 (from the initial condition). However, it is not a global solution because it doesn’t make sense outside of
2 in the interval [—3, 3].

guess that y(z) = C'z? solves the DE. Check that this is indeed the case :
by plugging into the DE!
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Solution. For instance, to find the slope at the point (3,1), we plug =3, Of— —- %/%»—(\\\—\ —
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Example 19. Solve the IVP zy’ =2y, y(1)=2.
Solution. Rewrite the DE as %% = %

Then multiply both sides with dz and integrate both of them to get [~dy = [ = dz.

Hence, In|y| =2ln|z|+ C.

The initial condition y(1) =2 tells us that, at least locally, © >0 and y > 0. Thus In(y) =2In(z) + C.
Moreover, plugging in z =1 and y =2, we find C =1n(2).

Solving In(y) = 2In(z) + In(2) for y, we find y = 2" (@) +In(2) — 952,

Comment. When solving a DE or IVP, we can generally only expect to find a local solution, meaning that our

solution might only be valid in a small interval around the initial condition (here, we can only expect y(x) to be

a solution for all  in an interval around 1; especially since we assumed x > 0 in our solution). However, we can

check (do it!) that the solution y = 222 is actually a global solution (meaning that it is a solution for all z, not

just locally around 1).

Let's solve the same differential equation with a different choice of initial condition:

Example 20. Solve the IVP xy' =2y, y(1)=—1.

. . . 1dy _ 2 . . . . 1, 2
Solution. Again, we rewrite the DE as Tde % multiply both sides with dx, and integrate to get f;dy— f;da:.

Hence, In|y| =2In|z|+ C. The initial condition y(1) = —1 tells us that, at least locally, >0 and y <0 (note
that this means |y| = —y). Thus In(—y) =2In(z) + C.

Moreover, plugging in x =1 and y=—1, we find C =0.
Solving In(—y) =2In(z) for y, we find y = —e?n(*) — _22 We easily verify that this is indeed a global solution.

Example 21. y’'=x + y is a DE for which the variables cannot be separated.

No worries, very soon we will have several tools to solve this DE as well.
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