
Notes for Lecture 1 Wed, 8/21/2024

Review: Computing derivatives
Given a function y(x), we learned in Calculus I that its derivative

y 0(x)= dy
dx

= lim
�x!0

�y
�x

(where �y= y(x+�x)¡ y(x)) has the following two important characterizations:

� y 0(x) is the slope of the tangent line of the graph of y(x) at x, and

� y 0(x) is the rate of change of y(x) at x.

Comment. Derivatives were introduced in the late 1600s by Newton and Leibniz who later each claimed priority
in laying the foundations for calculus. Certainly both of them contributed mightily to those foundations.

Moreover, we learned simple rules to compute the derivative of functions:

� (sum rule) d

dx
[f(x)+ g(x)] = f 0(x)+ g 0(x)

� (product rule) d

dx
[f(x)g(x)] = f 0(x)g(x)+ f(x)g 0(x)

� (chain rule) d

dx
[f(g(x))] = f 0(g(x))g 0(x)

Comment. If we write t= g(x) and y= f(t), then the chain rule takes the form dy

dx
=
dy

dt
� dt
dx

.

In other words, the chain rule expresses the fact that we can treat dy
dx

(which initially is just a notation
for y0(x)) as an honest fraction.

� (basic functions) d

dx
xr= rxr¡1,

d

dx
ex= ex, d

dx
ln(x)= 1

x
,

d

dx
sin(x)= cos(x), d

dx
cos(x)=¡sin(x)

These rules are enough to compute the derivative of any function that we can build from the basic
functions using algebraic operations and composition. On the other hand, as you probably recall
from Calculus II, reversing the operation of differentiation (i.e. computing antiderivatives) is much
more difficult.
In particular, there exist simple functions (such as ex

2
) whose antiderivative cannot be expressed in terms of the

basic functions above.

Example 1. Derive the quotient rule from the rules above.

Solution. We write f(x)

g(x)
= f(x) � 1

g(x)
and apply the product rule to get

d
dx

f(x) � 1
g(x)

= f 0(x)
1

g(x)
+ f(x)

d
dx

1
g(x)

:

By the chain rule combined with d

dx

1

x
=¡ 1

x2
, we have d

dx

1

g(x)
=¡ 1

g(x)2
g 0(x). Using this in the previous formula,

d
dx

f(x) � 1
g(x)

= f 0(x)
1

g(x)
¡ f(x)

1

g(x)2
g 0(x)=

f 0(x)
g(x)

¡ f(x)g0(x)
g(x)2

:

Putting the final two fractions on a common denominator, we obtain the familiar quotient rule

d
dx

f(x)
g(x)

=
f 0(x)g(x)¡ f(x)g 0(x)

g(x)2
:
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Example 2. Compute the following derivatives:

(a) d

dx
(5x3+7x2+2)

(b) d

dx
sin(5x3+7x2+2)

(c) d

dx
(x3+2x)sin(5x3+7x2+2)

Solution.

(a) d

dx
(5x3+7x2+2)= 15x2+ 14x

(b) d

dx
sin(5x3+7x2+2)= (15x2+ 14x) cos(5x3+7x2+2)

(c) d

dx
(x3+2x) sin(5x3+7x2+2)

= (3x2+2) sin(5x3+7x2+2)+ (x3+2x)(15x2+ 14x) cos(5x3+7x2+2)

First examples of differential equations

Example 3. If y(x)= ex
2
then y 0(x)= 2xex

2
=2xy(x) or, for short, y 0=2xy.

Accordingly, we say that y(x)= ex
2
is a solution to the differential equation (DE) y 0=2xy.

Comment. Note that y(x)= ex
2
also is a solution to the differential equation y 0=2xex

2
. Because this DE only

involves y 0 but not y, we can solve it by computing an antiderivative of 2xex
2
.

Can you come up with a few more DEs that y(x)= ex
2
solves?

[For instance, by computing its second derivative, we can find that it also solves the DEs y 00= (4x2 + 2)y or
y00=2y+2xy 0.]

Example 4. To solve the DE y 0=ex2 we would need to find a function y(x) such that y 0(x)=ex
2
.

In other words, we need to compute the antiderivative of ex
2
. It turns out that this cannot be

done using the basic functions we know from Calculus.
This is an early indication that solving DEs is hard (and includes computing integrals as a special case).
Advanced comment. A �solution� to the above issue is to define a new function as the antiderivative that we
presently cannot write down a formula for. Look up the so-called error function if you are curious!

Example 5. Solve the DE y 0=x2+x.
Solution. Note that the DE simply asks for a function y(x) with a specific derivative (in particular, the right-
hand side does not involve y(x)). In other words, the desired y(x) is an antiderivative of x2 + x. We know
from Calculus II that we can find antiderivatives by integrating:

y(x)=

Z
(x2+ x)dx=

1
3
x3+

1
2
x2+C

Moreover, we know from Calculus II that there are no other solutions. In other words, we found
the general solution to the DE.
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Notes for Lecture 2 Fri, 8/23/2024

Example 6. (review) Solve the DE y 0=x2+x.

Solution. Note that the DE simply asks for a function y(x) with a specific derivative (in particular, the right-
hand side does not involve y(x)). In other words, the desired y(x) is an antiderivative of x2 + x. We know
from Calculus II that we can find antiderivatives by integrating:

y(x)=

Z
(x2+ x)dx=

1
3
x3+

1
2
x2+C

Moreover, we know from Calculus II that there are no other solutions. In other words, we found
the general solution to the DE.

If the highest derivative appearing in a DE is an rth derivative, we say that the DE has order r.
For instance. The DE y 0=3 1¡ y2

p
has order 1 (such DEs are also called first order DEs).

On the other hand, the DE y 00= y 0+6y has order 2 (such DEs are also called second order DEs).

As we will observe in the next few examples, we typically expect that the general solution of a
DE of order r has r parameters (or degrees of freedom).

A first initial value problem

To single out a particular solution, we need to specify additional conditions (typically one condi-
tion per parameter in the general solution). For instance, it is common to impose initial conditions
such as y(1)=2. A DE together with an initial condition is called an initial value problem (IVP).

Example 7. Solve the IVP y 0=x2+x with y(1)= 2.
Solution. From the previous example, we know that y(x)= 1

3
x3+

1

2
x2+C.

Since y(1)= 1

3
+
1

2
+C=

5

6
+C =

!
2, we find C =2¡ 5

6
=
7

6
.

Hence, y(x)= 1

3
x3+

1

2
x2+

7

6
is the (unique) solution of the IVP.

Example 8. (homework) Solve the DE y 00=x2+x.

Solution. We now take two antiderivatives of x2+x to get

y(x)=

ZZ
(x2+ x)dxdx=

Z �
1
3
x3+

1
2
x2+C

�
dx=

1
12
x4+

1
6
x3+Cx+D;

where it is important that we give the second constant of integration a name different from the first.
Important comment. This is the general solution to the DE. The DE is of order 2 and, as expected, the general
solution has 2 parameters.

Verifying if a function solves a DE

Given a function, we can always check whether it solves a DE!
We can just plug it into the DE and see if left and right side agree. This means that we can always check our
work as well as that we can verify solutions generated by someone else (or a computer algebra system) even
if we don't know the techniques for solving the DE.
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Example 9. (warmup) Consider the DE y 00= y 0+6y.

(a) Is y(x)= e2x a solution?

(b) Is y(x)= e3x a solution?

Solution.

(a) We compute y 0=2e2x and y 00=4e2x.
Since y 0+6y=8e2x is different from y 00=4e2x, we conclude that y(x)= e2x is not a solution.

(b) We compute y 0=3e3x and y 00=9e3x.
Since y 0+6y=9e3x is equal to y 00=9e3x, we conclude that y(x)= e3x is a solution of the DE.

We will soon be able to completely solve differential equations such as in the previous example.
The following gives a taste of how we will go about it:

Example 10. (cont'd) Consider the DE y 00= y 0+6y. For which r is erx a solution?

Solution. If y(x)= erx, then y 0(x)= rerx and y00(x)= r2 erx.
Plugging y(x)= erx into the DE, we get r2erx= rerx+6erx which simplifies to r2= r+6.
This has the two solutions r=¡2, r=3. Hence e¡2x and e3x are solutions of the DE.

In fact, we check that Ae¡2x+Be3x is a two-parameter family of solutions to the DE.
Important comment. It is no coincidence that the order of the DE is 2, whereas the previous example has order
1. In general, we expect a DE of order r to have a solution with r parameters.

Example 11. Consider the DE ey y 0=1.

(a) Is y(x)= ln(x) a solution to the DE?

(b) Is y(x)= ln(x)+C a solution to the DE?

(c) Is y(x)= ln(x+C) a solution to the DE?

Solution.

(a) Since y 0(x)= 1

x
and ey(x)= eln(x)= x, we have ey y 0= x � 1

x
=
�
1.

Hence, y(x)= ln(x) is a solution to the given DE.

(b) Since y 0(x) = 1

x
and ey(x)= eln(x)+C = xeC, we have ey y 0= xeC � 1

x
= eC. Thus the DE is satisfied

only if eC=1 which only happens if C=0 (which is the case in the first part).
Hence, y(x)= ln(x)+C is not a solution to the given DE except if C =0.

(c) Since y 0(x)= 1

x+C
and ey(x)= eln(x+C)=x+C, we have ey y0=(x+C) � 1

x+C
=
�
1.

Hence, y(x)= ln(x+C) is indeed a one-parameter family of solutions to the given DE.
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Any fixed function usually solves many DEs

Usually, we start with a DE (which comes, for instance, from physical laws) and want to solve it.
In the next example, we start with a function and determine several DEs that it solves.

Example 12. Determine several (random) DEs that y(x)= sin(3x) solves.
Solution. Here are some options (but there are many more):

(a) We compute y 0(x)= 3cos(3x). Accordingly, y(x)= sin(3x) solves the DE y 0=3cos(3x).
Comment. This, however, is not an �interesting� choice. In particular, this DE could be simply solved by
computing an antiderivative (as in the previous examples).
Comment. Note that there are further solutions to this DE: the general solution is

R
3cos(3x)dx =

sin(3x) + C where C is any constant. We say that y(x) = sin(3x) + C is a one-parameter family of
solutions to the DE. C is called a degree of freedom.

(b) Note that y 0(x)= 3 cos(3x)= 3 1¡ (sin(3x))2
q

=3 1¡ y(x)2
q

(for x close to 0).

[Here we used that cos(x)2+ sin(x)2=1, which implies that cos(x)= 1¡ sin(x)2
q

.]

Hence, y(x)= sin(3x) solves the differential equation y 0=3 1¡ y2
p

.
Comment. In the above, we restrict x to

¡
¡�

6
;
�

6

�
so that cos(3x)> 0. Less precisely, we can say that

x is close to 0. (It is a common feature of DEs that we work with values of x close to a certain initial value.)

(c) We compute y 00(x)=¡9sin(3x). Accordingly, y(x)= sin(3x) solves the DE y 00=¡9sin(3x).
Comment. Once more this DE is easy (because it only involves y00 but not y or y 0). Hence, we can find
the general solution by simply taking two antiderivatives:

y(x)=

ZZ
¡9sin(3x)dxdx=

Z
(3cos(3x)+C)dx= sin(3x)+Cx+D:

It is important that we give the second constant of integration a name different from the first. That way, we
see that the general solution has 2 degrees of freedom. This matches the fact that the order of the DE is 2.
Important comment. This is no coincidence. In general, we expect a DE of order r to have a general
solution with r parameters.

(d) y(x)= sin(3x) also solves the DE y00=¡9y.
Comment. This is again a DE of order 2. Therefore the general solution should have 2 degrees of freedom.
Later we will learn to solve such DEs. For now, we can verify that y(x) = A sin(3x) + B cos(3x) is a
solution for any constants A and B.
Homework. Check that y(x)= sin(3x)+C does not solve the DE y00=¡9y.
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Notes for Lecture 3 Mon, 8/26/2024

Slope fields, or sketching solutions to DEs
The next example illustrates that we can �plot� solutions to differential equations (it does not
matter if we are able to actually solve them).
Comment. This is an important point because �plotting� really means that we can numerically approximate
solutions. For complicated systems of differential equations, such as those used to model fluid flow, this is usually
the best we can do. Nobody can actually solve these equations.

Example 13. Consider the DE y 0=¡x/y.
Let's pick a point, say, (1;2). If a solution y(x) is passing through
that point, then its slope has to be y 0=¡1/2. We therefore draw
a small line through the point (1;2) with slope¡1/2. Continuing
in this fashion for several other points, we obtain the slope field
on the right.

With just a little bit of imagination, we can now anticipate the
solutions to look like (half)circles around the origin. Let us check

whether y(x)= r2¡x2
p

might indeed be a solution!

y 0(x)=
1

2

¡2x
r2¡ x2

p =¡x/y(x). So, yes, we actually found solutions!
-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Solving DEs: Separation of variables

Example 14. Solve the DE y 0=¡x

y
.

Solution. Rewrite the DE as dy

dx
=¡x

y
.

Separate the variables to get ydy=¡xdx (in particular, we are multiplying both sides by dx).
Integrating both sides, we get

R
ydy=

R
¡xdx.

Computing both integrals results in 1

2
y2=¡1

2
x2+C (we combine the two constants of integration into one).

Hence x2+ y2=D (with D=2C).
This is an implicit form of the solutions to the DE. We can make it explicit by solving for y. Doing so, we find
y(x)=� D¡x2

p
(choosing+ gives us the upper half of a circle, while the negative sign gives us the lower half).

Comment. The step above where we break dy

dx
apart and then integrate may sound sketchy!

However, keep in mind that, after we find a solution y(x), even if by sketchy means, we can (and should!) verify
that y(x) is indeed a solution by plugging into the DE. We actually already did that in the previous example!

Which differential equations can we actually solve using separation of variables?

� A general DE of first order is typically of the form dy

dx
= f(x; y).

For instance, dy
dx
= sin(xy)¡ x2y.

Comment. First order means that only the first derivative of y shows up. The most general form of a
DE of first order is F (x; y; y 0)= 0 but we can usually solve for y 0 to get to the above form.

� The ones we can solve are separable equations, which are of the form dy

dx
= g(x)h(y).

Example. The equation dy

dx
= y¡x (although simple) is not separable.

Example. The equation dy

dx
= ey¡x is separable because we can write it as dy

dx
= ey e¡x.
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Example 15. (extra)
Comment. In this example, we use x(t) instead of y(x) for the function described by the differential equation.
In general, of course, any choice of variable names is possible. If we write something like x0 or y 0 it needs to be
clear from the context with respect to which variable that derivative is meant (such as x0= d

dt
x(t)).

(a) Solve the DE dx

dt
= kx2.

(b) Verify your answer from the first part.

(c) Solve the IVP dx

dt
= kx2, x(0)= 2.

(d) Solve the IVP dx

dt
= kx2, x(0)= 0.

Solution.

(a) This DE is separable: 1

x2
dx= kdt. Integrating, we find ¡1

x
= kt+B. (We plan to replace B by a new

constant C in a moment.) Hence, x=¡ 1

kt+B
=

1

C ¡ kt .

[Here,C=¡B but that relationship doesn't matter; it only matters that the solution has a free parameter.]
Comment. Note that we did not find the solution x=0 (lost when dividing by x2). It is called a singular
solution because it is not part of the general solution (the one-parameter family found above). [Although,
we can obtain it from the general solution by letting C!1.]
See the last part for a case when this �missing� solution is needed.

(b) Starting with x(t)= 1

C ¡ kt , we compute that dx
dt
=¡ 1

(C ¡ kt)2 � (¡k)=
k

(C ¡ kt)2 .

On the other hand, kx2= k
�

1

C ¡ kt

�
2
=

k

(C ¡ kt)2
. Since this matches what we got for dx

dt
, it is indeed

true that dx
dt
= kx2.

(c) We start with x(t)= 1

C ¡ kt
(which we know solves the DE for any value of C) and seek to choose C so

that x(0)=2.

Since x(0)=
h

1

C ¡ kt

i
t=0

=
1

C
=
!
2, we find C=

1

2
.

Hence, the IVP has the (unique) solution x(t)= 1

1/2¡ kt .

(d) Proceeding as in the previous part, we now arrive at the impossible equation 1

C
=
!
0.

However, this suggests that we should consider taking C!1 in x(t)= 1

C ¡ kt
, which results in x(t)=0.

Indeed, it is easy to verify (make sure you know what this entails!) that x(t)= 0 solves the IVP.
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Notes for Lecture 4 Wed, 8/28/2024

In the following example, we first proceed like we did when producing a slope field to compute
slopes (and, therefore, tangent lines) of solutions. Indeed, besides the slope y 0, we can further
compute further derivatives like y 00 or y 000 by differentiating the DE.

Do you recall how y 00 tells us about the curvature of a function y(x)?

Example 16. Consider the DE x2y 0=1+xy3. Suppose that y(x) is a solution passing through
the point (2; 1).
Important. This is the same as saying that y(x) solves the IVP x2y 0=1+xy3 with y(2)= 1.

(a) Determine y 0(2).

(b) Determine the tangent line of y(x) at (2; 1).

(c) Determine y 00(2).

Comment. Note that this DE is not separable.

Solution.

(a) At the point (2; 1) we have x=2 and y=1. Plugging these values into the differential equation, we get
4y 0=1+2 � 13=3 which we can solve for y 0 to find y 0= 3

4
.

Since y 0 is short for y0(x)= y 0(2), we have found y0(2)= 3

4
.

(b) The tangent line is the line through (2; 1) with slope 3

4
(computed in the previous part).

From this information, we can immediately write down its equation in the form y=
3

4
(x¡ 2)+ 1.

(c) To get our hands on y 00(2), we can differentiate (with respect to x) both sides of x2y 0=1+ xy3.

Applying the product rule, we have d

dx
x2y 0(x) = 2xy 0(x) + x2y00(x) = 2xy 0 + x2y 00 as well as

d

dx
(1+xy(x)3)= y(x)3+ x � 3y(x)2 � y 0(x)= y3+3xy2y 0.

Thus 2xy 0+x2y 00= y3+3xy2y 0. To find y 00(2), we plug in x=2, y=1, y 0= 3

4
.

This results in 2 � 2 � 3
4
+4y 00=1+3 � 2 � 1 � 3

4
or 3+4y 00=

11
2
. It follows that y 00= 1

4
� 5
2
=
5

8
.

Comment. Alternatively, we can rewrite the DE as y 0= 1

x2
+

1

x
y3 and then differentiate. Do it!

Comment. Do you recall from Calculus what it means visually to have y 00= 5

8
?

[Since y 00 > 0 it means that our function is concave up at (2; 1). As such, its graph will lie above the
tangent line.]
Comment. Note that we could continue and likewise find y 000(2) or higher derivatives at x=2. This is
the starting point for the power series method typically discussed in Differential Equations II.

Solving DEs: Separation of variables, cont'd

In general, separation of variables solves y 0= g(x)h(y) by writing the DE as 1

h(y)
dy= g(x)dx.

Note that 1

h(y)

dy

dx
= g(x) is indeed equivalent to

R 1

h(y)
dy=

R
g(x)dx+C. Why?! (Apply d

dx
to the integrals:::)

Example 17. Solve the IVP y 0=¡x

y
, y(0)=¡3.

Comment. Instead of using what we found earlier in Example 14, we start from scratch to better illustrate the
solution process (and how we can use the initial condition right away to determine the value of the constant of
integration).
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Solution. We separate variables to get ydy=¡xdx.
Integrating gives 1

2
y2=¡1

2
x2+C, and we use y(0)=¡3 to find 1

2
(¡3)2=0+C so that C =

9

2
.

Hence, x2+ y2=9 is an implicit form of the solution.

Solving for y, we get y=¡ 9¡ x2
p

(note that we have to choose the negative sign so that y(0)=¡3).
Comment. Note that our solution is a local solution, meaning that it is valid (and solves the DE) locally around
x=0 (from the initial condition). However, it is not a global solution because it doesn't make sense outside of
x in the interval [¡3; 3].

Example 18. Consider the DE xy 0=2y.
Sketch its slope field.
Challenge. Try to guess solutions y(x) from the slope field.

Solution. For instance, to find the slope at the point (3;1), we plug x=3,
y=1 into the DE to get 3y0=2. Hence, the slope is y 0=2/3.
The resulting slope field is sketched on the right.
Solution of the challenge. Trace out the solution through (1;1) (and then
some other points). Their shape looks like a parabola, so that we might
guess that y(x)=Cx2 solves the DE. Check that this is indeed the case
by plugging into the DE! -3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Example 19. Solve the IVP xy 0=2y, y(1)=2.

Solution. Rewrite the DE as 1

y

dy

dx
=

2

x
.

Then multiply both sides with dx and integrate both of them to get
R 1
y
dy=

R 2

x
dx.

Hence, lnjy j=2lnjxj+C.
The initial condition y(1)= 2 tells us that, at least locally, x> 0 and y > 0. Thus ln(y)= 2ln(x)+C.
Moreover, plugging in x=1 and y=2, we find C= ln(2).

Solving ln(y)= 2ln(x)+ ln(2) for y, we find y= e2ln(x)+ln(2)=2x2.
Comment. When solving a DE or IVP, we can generally only expect to find a local solution, meaning that our
solution might only be valid in a small interval around the initial condition (here, we can only expect y(x) to be
a solution for all x in an interval around 1; especially since we assumed x> 0 in our solution). However, we can
check (do it!) that the solution y=2x2 is actually a global solution (meaning that it is a solution for all x, not
just locally around 1).

Let's solve the same differential equation with a different choice of initial condition:

Example 20. Solve the IVP xy 0=2y, y(1)=¡1.
Solution. Again, we rewrite the DE as 1

y

dy

dx
=
2

x
, multiply both sides with dx, and integrate to get

R 1
y
dy=

R 2
x
dx.

Hence, lnjy j=2lnjxj+C. The initial condition y(1)=¡1 tells us that, at least locally, x> 0 and y < 0 (note
that this means jy j=¡y). Thus ln(¡y)= 2ln(x)+C.
Moreover, plugging in x=1 and y=¡1, we find C =0.
Solving ln(¡y)=2ln(x) for y, we find y=¡e2ln(x)=¡x2. We easily verify that this is indeed a global solution.

Example 21. y 0=x+ y is a DE for which the variables cannot be separated.

No worries, very soon we will have several tools to solve this DE as well.
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Notes for Lecture 5 Fri, 8/30/2024

ODEs vs PDEs

Important. Note that we are working with functions y(x) of a single variable. This allows us to
write simply y 0 for d

dx
y(x) without risk of confusion.

Of course, we may use different variables such as x(t) and x0= d

dt
x(t), as long as this is clear from the context.

Differential equations that involve only derivatives with respect to a single variable are known as
ordinary differential equations (ODEs).
On the other hand, differential equations that involve derivatives with respect to several variables
are referred to as partial differential equations (PDEs).

Example 22. The DE �
@
@x

�
2

u(x; y)+
�
@
@y

�
2

u(x; y)= 0;

often abbreviated as uxx+uyy=0, is a partial differential equation in two variables.

This particular PDE is known as Laplace's equation and describes, for ialsonstance, steady-state heat distribu-
tions.
https://en.wikipedia.org/wiki/Laplace%27s_equation

This and other fundamental PDEs will be discussed in Differential Equations II.

Existence and uniqueness of solutions

The following is a very general result that allows us to guarantee that �nice� IVPs must have a
solution and that this solution is unique.
Comment. Note that any first-order DE can be written as g(y 0; y; x) = 0 where g is some function of three
variables. Assuming that g is reasonable, we can solve for y0 and rewrite such a DE as y 0= f(x; y) (for some,
possibly complicated, function f).
Comment. To be precise, a solution to the IVP y0= f(x; y), y(a)= b is a function y(x), defined on an interval
I containing a, such that y 0(x)= f(x; y(x)) for all x2 I and y(a)= b.

Theorem 23. (existence and uniqueness) Consider the IVP y 0= f(x; y), y(a)= b.

If both f(x; y) and @

@y
f(x; y) are continuous [in a rectangle] around (a; b), then the IVP has a

unique solution in some interval x2 (a¡ �; a+ �) where � > 0.

Comment. The interval around a might be very small. In other words, the � in the theorem could be very small.
Comment. Note that the theoremmakes two important assertions. First, it says that there exists a local solution.
Second, it says that this solution is unique. These two parts of the theorem are famous results usually attributed
to Peano (existence) and Picard�Lindelöf (uniqueness).

Advanced comment. The condition about @

@y
f(x; y) is a bit technical (and not optimal). If we drop this

condition, we still get existence but, in general, no longer uniqueness.
Advanced comment. The interval in which the solution is unique could be smaller than the interval in which it
exists. In other words, it is possible that, away from the initial condition, the solution �forks� into two or more
solutions. Note that this does not contradict the theorem because it only guarantees uniqueness on a small
interval.
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Example 24. Consider the IVP (x ¡ y2)y 0 = 3x, y(4) = b. For which choices of b does the
existence and uniqueness theorem guarantee a unique (local) solution?

Solution. The IVP is y 0= f(x; y) with f(x; y)=3x/(x¡ y2). We compute that @

@y
f(x; y)=6xy/(x¡ y2)2.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y) with x¡ y2=/ 0.

Note that 4¡ b2=/ 0 is equivalent to b=/ �2.
Hence, if b=/ �2, then the IVP locally has a unique solution by the existence and uniqueness theorem.

Example 25. Consider, again, the IVP xy 0 = 2y, y(a) = b.
Discuss existence and uniqueness of solutions (without solving).

Solution. The IVP is y 0= f(x; y) with f(x; y)= 2y/x.

We compute that @

@y
f(x; y)= 2/x.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y)

with x=/ 0.
Hence, if a=/ 0, then the IVP locally has a unique solution by the existence
and uniqueness theorem.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

What happens in the case a=0?
Solution. In Example 18, we found that the DE xy0=2y is solved by y(x)=Cx2.
This means that the IVP with y(0)= 0 has infinitely many solutions.
On the other hand, the IVP with y(0)= b where b=/ 0 has no solutions. (This follows from the fact that there
are no solutions to the DE besides y(x)=Cx2. Can you see this by looking at the slope field?)

Example 26. Consider the IVP y 0=ky2, y(a)= b. Discuss existence and uniqueness of solutions.

Solution. The IVP is y 0= f(x; y) with f(x; y)= ky2. We compute that @

@y
f(x; y)= 2ky.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y).

Hence, for any initial conditions, the IVP locally has a unique solution by the existence and uniqueness theorem.

Example 27. Solve y 0= ky2.

Solution. Separate variables to get 1

y2
dy

dx
= k. Integrating

R 1

y2
dy=

R
kdx, we find ¡1

y
= kx+C.

We solve for y to get y=¡ 1

C+ kx
=

1

D¡ kx (with D=¡C). That is the solution we verified earlier!

Comment. Note that we did not find the solution y = 0 (it was �lost� when we divided by y2). It is called a
singular solution because it is not part of the general solution (the one-parameter family found above). However,
note that we can obtain it from the general solution by letting D!1.
Caution. We have to be careful about transforming our DE when using separation of variables: Just as the division
by y2 made us lose a solution, other transformations can add extra solutions which do not solve the original DE.
Here is a silly example (silly, because the transformation serves no purpose here) which still illustrates the point.
The DE (y ¡ 1)y 0= (y ¡ 1)ky2 has the same solutions as y0= ky2 plus the additional solution y= 1 (which
does not solve y0= ky2).

Example 28. Solve the IVP y 0= y2, y(0)= 1.
Solution. From the previous example with k=1, we know that y(x)= 1

D¡ x
.

Using y(0)= 1, we find that D=1 so that the unique solution to the IVP is y(x)= 1

1¡x .

Comment. Note that we already concluded the uniqueness from the existence and uniqueness theorem.
On the other hand, note that y(x)= 1

1¡x is only valid on (¡1;1) and that it cannot be continuously extended
past x=1; it is only a local solution.
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Notes for Lecture 6 Wed, 9/4/2024

Review. Existence and uniqueness theorem (Theorem 23) for an IVP y 0= f(x; y), y(a)= b:

If f(x; y) and @

@y
f(x; y) are continuous around (a; b) then, locally, the IVP has a unique solution.

Example 29. Consider, again, the IVP y 0 = ¡x/ y, y(a) = b.
Discuss existence and uniqueness of solutions (without solving).

Solution. The IVP is y 0= f(x; y) with f(x; y)=¡x/y.
We compute that @

@y
f(x; y)=x/y2.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y)

with y=/ 0.
Hence, if b=/ 0, then the IVP locally has a unique solution by the existence
and uniqueness theorem.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2
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Comment. In Example 14, we found that the DE y 0=¡x/y is solved by y(x)=� D¡x2
p

.

Assume b > 0 (things work similarly for b < 0). Then y(x) = D¡x2
p

solves the IVP (we need to choose D
so that y(a) = b) if we choose D = a2 + b2. This confirms that there exists a solution. On the other hand,
uniqueness means that there can be no other solution to the IVP than this one.

What happens in the case b=0?
Solution. In this case, the existence and uniqueness theorem does not guarantee anything. If a =/ 0, then
y(x)= a2¡ x2

p
and y(x)=¡ a2¡ x2

p
both solve the IVP (so we certainly don't have uniqueness), however

only in a weak sense: namely, both of these solutions are not valid locally around x= a but only in an interval
of which a is an endpoint (for instance, the IVP y 0=¡x/y, y(2)=0 is solved by y(x)=� 4¡ x2

p
but both

of these solutions are only valid on the interval [¡2; 2] which ends at 2, and neither of these solutions can be
extended past 2).

Linear first-order DEs

A linear differential equation is one where the function y and its derivatives only show up linearly
(i.e. there are no terms such as y2, 1/y, sin(y) or y � y 0).
As such, the most general linear first-order DE is of the form

A(x)y 0+B(x)y+C(x)= 0:

Such a DE can be rewritten in the following �standard form� by dividing by A(x) and rearranging:

(linear first-order DE in standard form)

y 0+P (x)y=Q(x)

We will use this standard form when solving linear first-order DEs.
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Example 30. (extra �warmup�) Solve dy

dx
=2xy2.

Solution. (separation of variables) 1

y2
dy

dx
=2x, ¡1

y
=x2+C.

Hence the general solution is y= 1

D¡ x2
. [There also is the singular solution y=0.]

Solution. (in other words) Note that 1

y2
dy

dx
=2x can be written as d

dx

h
¡1

y

i
=

d

dx
[x2].

From there it follows that ¡1

y
=x2+C, as above.

We now use the idea of writing both sides as a derivative (which we then integrate!) to also solve
DEs that are not separable. We will be able to handle all first-order linear DEs this way.

The multiplication by 1

y2
will be replaced by multiplication with a so-called integrating factor.

Example 31. Solve y 0=x¡ y.

Comment. Note that we cannot use separation of variables this time.

Solution. Rewrite the DE as y0+ y= x.
Next, multiply both sides with ex (we will see in a little bit how to find this �integrating factor�) to get

exy 0+ exy

=
d

dx
[exy]

= xex:

The �magic� part is that we are able to realize the new left-hand side as a derivative!
We can then integrate both sides to get

exy=

Z
xexdx= xex¡ ex+C:

From here it follows that y= x¡ 1+Ce¡x.

Comment. For the final integral, we used that
Z
xexdx= xex¡

Z
exdx= xex¡ ex+ C which follows, for

instance, via integration by parts (with f(x)=x and g0(x)= ex in the formula reviewed below).

Review. The multiplication rule (fg)0= f 0 g+ fg 0 implies fg=
Z
f 0 g+

Z
fg 0.

The latter is equivalent to integration by parts:Z
f(x)g 0(x)dx= f(x)g(x)¡

Z
f 0(x)g(x)dx

Comment. Sometimes, one writes g0(x)dx=dg(x).
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In general, we can solve any linear first-order DE y 0+P (x)y=Q(x) in this way.

� We want to multiply with an integrating factor f(x) such that the left-hand side of the
DE becomes

f(x)y 0+ f(x)P (x)y= d
dx
[f(x)y]:

Since d

dx
[f(x)y] = f(x)y 0+ f 0(x)y, we need f 0(x)= f(x)P (x) for that.

� Check that f(x)= exp
�Z

P (x)dx
�
has this property.

Comment. This follows directly from computing the derivative of this f(x) via the chain rule.
Homework. On the other hand, note that finding f meant solving the DE f 0 = P (x) f . This is a
separable DE. Solve it by separation of variables to arrive at the above formula for f(x) yourself.
Just to make sure. There is no difference between exp(x) and ex. Here, we prefer the former notation
for typographical reasons.

With that integrating factor, we have the following recipe for solving any linear first-order equation:

(solving linear first-order DEs)

(a) Write the DE in the standard form y 0+P (x)y=Q(x).

(b) Compute the integrating factor as f(x)= exp
�Z

P (x)dx
�
.

[We can choose any constant of integration.]

(c) Multiply the DE from part (a) by f(x) to get

f(x)y 0+ f(x)P (x)y

=
d

dx
[f(x)y]

= f(x)Q(x):

(d) Integrate both sides to get

f(x)y=
Z
f(x)Q(x)dx+C:

Then solve for y by dividing by f(x).

Comment. For better understanding, we prefer to go through the above steps. On the other hand, we can
combine these steps into the following formula for the general solution of y0+P (x)y=Q(x):

y=
1

f(x)

�Z
f(x)Q(x)dx+C

�
where f(x)= e

R
P (x)dx

Existence and uniqueness. Note that the solution we construct exists on any interval on which P and Q are
continuous (not just on some possibly very small interval). This is better than what the existence and uniqueness
theorem (Theorem 23) can guarantee. This is one of the many ways in which linear DEs have particularly nice
properties compared to DEs in general.
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Notes for Lecture 7 Fri, 9/6/2024

Review. We can solve linear first-order DEs using integrating factors.

First, put the DE in standard form y 0+P (x)y=Q(x). Then f(x)=exp
�Z

P (x)dx

�
is the integrating factor.

The key is that we get on the left-hand side f(x)y0+ f(x)P (x)y=
d

dx
[f(x) y]. We can therefore integrate both

sides with respect to x (the right-hand side is f(x)Q(x) which is just a function depending on x�not y!).

Example 32. Solve x2 y 0=1¡xy+2x, y(1)= 3.
Solution. This is a linear first-order DE. We can therefore solve it according to the recipe above.

(a) Rewrite the DE as dy

dx
+P (x)y=Q(x) (standard form) with P (x)= 1

x
and Q(x)= 1

x2
+

2

x
.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= elnx= x.

Here, we could write lnx instead of lnjxj because the initial condition tells us that x>0, at least locally.
Comment. We can also choose a different constant of integration but that would only complicate things.

(c) Multiply the DE (in standard form) by f(x)= x to get

x
dy
dx

+ y

=
d

dx
[xy]

=
1
x
+2:

(d) Integrate both sides to get (again, we use that x> 0 to avoid having to use jxj)

xy=

Z �
1
x
+2

�
dx= lnx+2x+C:

Using y(1)= 3 to find C, we get 1 � 3= ln(1)+ 2 � 1+C which results in C =3¡ 2=1.

Hence, the (unique) solution to the IVP is y= ln(x)+ 2x+1

x
.

Example 33. Solve xy 0=2y+1, y(¡2)= 0.
Solution. This is a linear first-order DE.

(a) Rewrite the DE as dy

dx
+P (x)y=Q(x) (standard form) with P (x)=¡2

x
and Q(x)= 1

x
.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= e¡2lnjxj= e¡2ln(¡x)=(¡x)¡2= 1

x2
.

Here, we used that, at least locally, x< 0 (because the initial condition is x=¡2< 0) so that jxj=¡x.

(c) Multiply the DE (in standard form) by f(x)= 1

x2
to get

1

x2
dy
dx
¡ 2

x3
y

=
d

dx

�
1

x2
y

� =
1

x3
:

(d) Integrate both sides to get
1

x2
y=

Z
1

x3
dx=¡ 1

2x2
+C:

Hence, the general solution is y(x)=¡1

2
+Cx2.

Solving y(¡2)=¡1

2
+4C =0 for C yields C =

1

8
. Thus, the (unique) solution to the IVP is y(x)= 1

8
x2¡ 1

2
.
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Example 34. (extra) Solve y 0=2y+3x¡ 1, y(0)= 2.
Solution. This is a linear first-order DE.

(a) Rewrite the DE as dy

dx
+P (x)y=Q(x) (standard form) with P (x)=¡2 and Q(x)= 3x¡ 1.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= e¡2x.

(c) Multiply the DE (in standard form) by f(x)= e¡2x to get

e¡2x
dy
dx
¡ 2e¡2xy

=
d

dx
[e¡2xy]

=(3x¡ 1)e¡2x:

(d) Integrate both sides to get

e¡2xy =

Z
(3x¡ 1)e¡2xdx

= 3

Z
xe¡2xdx¡

Z
e¡2xdx

= 3

�
¡1
2
xe¡2x¡ 1

4
e¡2x

�
¡
�
¡1
2
e¡2x

�
+C

= ¡3
2
xe¡2x¡ 1

4
e¡2x+C:

Here, we used that
Z
xe¡2xdx = ¡1

2
xe¡2x +

1
2

Z
e¡2xdx = ¡1

2
xe¡2x ¡ 1

4
e¡2x (for instance, via

integration by parts with f(x)=x and g0(x)= e¡2x).

Hence, the general solution is y(x)=¡3

2
x¡1

4
+Ce2x.

Solving y(0)=¡1

4
+C =2 for C yields C =

9

4
.

In conclusion, the (unique) solution to the IVP is y(x)=¡3

2
x¡1

4
+
9

4
e2x.
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Notes for Lecture 8 Mon, 9/9/2024

Substitutions in DEs

Example 35. (review) Using substitution, compute
Z

x
1+x2

dx.

Solution. We substitute u=1+ x2. In that case, du=2xdx.Z
x

1+ x2
dx=

1
2

Z
1
u
du=

1
2
lnjuj+C =

1
2
ln(1+ x2)+C

Comment. Why were we allowed to drop the absolute value in the logarithm?

Review. On the other hand, recall that
Z

1

1+ x2
dx= arctan(x)+C.

Example 36. Solve dy

dx
=(x+ y)2.

First things first. Is this DE separable? Is it linear? (No to both but make sure that this is clear to you.)
This means that our previous techniques are not sufficient to solve this DE.

Solution. Looking at the right-hand side, we have a feeling that the substitution u=x+ y might simplify things.

Then y=u¡ x and, therefore, dy
dx
=
du

dx
¡ 1.

Using these, the DE translates into du

dx
¡ 1=u2. This is a separable DE: 1

1+u2
du=dx

After integration, we find arctan(u)=x+C and, thus, u= tan(x+C).
The solution of the original DE is y=u¡x= tan(x+C)¡ x.

Useful substitutions

The previous example illustrates that different substitutions can help to solve a given DE.

Choosing the right substitution is difficult in general. The following is a compilation of important
cases that are easy to spot and for which the listed substitutions are guaranteed to succeed:

� y 0=F
¡ y
x

�
Set u= y

x
. Then y=ux and dy

dx
=x

du

dx
+u. We get x du

dx
+u=F (u). This DE is always separable.

Caution. The DE y 0 = F
¡ y
x

�
is sometimes called a �homogeneous equation�. However, we will soon

discuss homogeneous linear differential equations, where the label homogeneous means something dif-
ferent (though in both cases, there is a common underlying reason).

� y 0=F (ax+ by)

Set u= ax+ by. Then y= 1

b
(u¡ ax) and dy

dx
=
1

b

�
du

dx
¡ a
�
.

The new DE is 1
b

�
du

dx
¡ a
�
=F (u) or, simplified, du

dx
= a+ bF (u). This DE is always separable.

� y 0=F (x)y+G(x)yn (This is called a Bernoulli equation.)
Set u= y1¡n. The resulting DE is always linear.

Details. If u= y1¡n then y=u1/(1¡n) and, thus, dy
dx
=

1

1¡n
un/(1¡n)

du

dx
. [ 1

1¡n
¡ 1= n

1¡n
]

The new DE is 1

1¡nu
n/(1¡n) du

dx
=F (x)u1/(1¡n)+G(x)un/(1¡n).

Dividing both sides by un/(1¡n), the DE simplifies to 1

1¡n

du

dx
=F (x)u+G(x) which is a linear DE.

Comment. The original DE has the trivial solution y=0. Do you see where we lost that solution?

Armin Straub
straub@southalabama.edu

17



Example 37. (homework) Consider the DE x
dy

dx
= y+ y2f(x).

(a) Substitute u= y

x
. Is the resulting DE separable or linear?

(b) Substitute v= 1

y
. Is the resulting DE separable or linear?

(c) Solve each of the new DEs.

Solution.

(a) Set u= y

x
. Then y=ux and, thus, dy

dx
=x

du

dx
+u.

Using these, the DE translates into x
�
x
du

dx
+u

�
=ux+(ux)2f(x).

This DE simplifies to du

dx
=u2f(x). This is a separable DE.

(b) Set v= 1

y
. Then y= 1

v
and, thus, dy

dx
=¡ 1

v2
dv

dx
.

Using these, the DE translates into x
�
¡ 1

v2
dv

dx

�
=
1

v
+

1

v2
f(x).

This DE simplifies to xdv
dx
=¡v¡ f(x). This is a linear DE.

(c) Let us write F (x) for an antiderivative of f(x).

� The DE du

dx
=u2f(x) from the first part is separable: u2du= f(x)dx.

After integration, we find ¡ 1

u
=F (x)+C.

Since u= y

x
, this becomes ¡x

y
=F (x)+C.

The general solution of the initial DE therefore is y=¡ x

F (x)+C
.

� The DE x
dv

dx
=¡v¡ f(x) from the second part is linear. We apply our recipe:

(a) Rewrite the DE as dv

dx
+P (x)v=Q(x) with P (x)= 1/x and Q(x)=¡f(x)/x.

(b) The integrating factor is exp
�Z

P (x)dx

�
= elnx=x.

Comment. We should make a mental note that we assumed that x> 0. In the next step,
however, we see that the integrating factor works for all x.

(c) Multiply the (rewritten) DE by the integrating factor x to get xdv
dx

+ v

=
d

dx
[xv]

=¡f(x).

(d) Integrate both sides to get xv=¡F (x)+C.

Since v= 1

y
, we find x

y
=¡F (x)+C.

The general solution of the initial DE therefore is y=¡ x

F (x)¡C
.

Comment. Note that our two approaches led to the same general solution (from the existence and
uniqueness theorem, we can see that this must be the case). One of the formulas features +C while the
other features ¡C. However, that makes no difference because C is a free parameter (we could have
given them different names if we preferred).
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Example 38. Solve dy

dx
=(2x¡ 3y)2+ 2

3
, y(1)= 1

3
.

Solution. This is of the form y 0=F (2x¡ 3y) with F (t)= t2+
2

3
.

Therefore, as suggested by our list of useful substitutions, we substitute u=2x¡ 3y.
Then y= 1

3
(2x¡u) and dy

dx
=
1

3

�
2¡ du

dx

�
.

The new DE is 1
3

�
2¡ du

dx

�
=u2+

2

3
or, simplified, du

dx
=¡3u2.

This DE is separable: u¡2du=¡3dx. After integration, ¡ 1

u
=¡3x+C.

We conclude that u= 1

3x¡C and, hence, y(x)= 1

3
(2x¡u)= 2

3
x¡ 1

3

1

3x¡C .

Solving y(1)= 2

3
¡ 1

3

1

3¡C =
1

3
for C leads to C =2.

Hence, the unique solution of the IVP is y(x)= 2

3
x¡ 1

3(3x¡ 2) .
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Notes for Lecture 9 Wed, 9/11/2024

Example 39. Solve (x¡ y)dy
dx
=x+ y.

Solution. Divide the DE by x to get
¡
1¡ y

x

�dy
dx
=1+

y

x
. This is a DE of the form y0=F

¡ y
x

�
.

We therefore substitute u= y

x
. Then y=ux and dy

dx
= x

du

dx
+u.

The resulting DE is (x¡ux)
�
x
du

dx
+u

�
= x+ux, which simplifies to x(1¡u)du

dx
=1+u2.

This DE is separable: 1¡u

1+u2
du=

1

x
dx

Integrating both sides, we find arctan(u)¡ 1

2
ln(1+u2)= lnjxj+C.

Setting u= y/x, we get the (general) implicit solution arctan(y/x)¡ 1

2
ln(1+ (y/x)2)= lnjxj+C.

Comment. We used
Z

1

1+u2
du= arctan(u)+C and

Z
x

1+x2
dx=

1
2
ln(1+x2)+C when integrating.

See Example 35 where we reviewed these integrals.

Example 40. Solve the IVP dy

dx
=2y¡ 3xy5, y(0)=1.

Solution. This is an example of a Bernoulli equation (with n=5). We therefore substitute u= y1¡n= y¡4.

Accordingly, y=u¡1/4 and, thus, dy
dx
=¡1

4
u¡5/4

du

dx
.

The new DE is ¡1

4
u¡5/4

du

dx
=2u¡1/4¡ 3xu¡5/4, which simplifies to du

dx
=¡8u+ 12x.

This is a linear first-order DE, which we solve according to our recipe:

(a) Rewrite the DE as du
dx
+P (x)u=Q(x) with P (x)= 8 and Q(x)= 12x.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= e8x.

(c) Multiply the (rewritten) DE by f(x)= e8x to get

e8x
du
dx

+8e8xu

=
d
dx
[e8xu]

= 12xe8x:

(d) Integrate both sides to get:

e8xu= 12
Z
xe8xdx= 12

�
1
8
xe8x¡ 1

82
e8x
�
+C=

3
2
xe8x¡ 3

16
e8x+C

Here we used that
Z
xeaxdx=

1
a
xeax¡ 1

a2
eax. (Integration by parts!)

The general solution of the DE for u therefore is u= 3

2
x¡ 3

16
+Ce¡8x.

Correspondingly, the general solution of the initial DE is y=u¡1/4=1/
3

2
x¡ 3

16
+Ce¡8x4

q
.

Using y(0)= 1, we find 1=1/ C ¡ 3

16
4
q

from which we obtain C =1+
3

16
=

19
16
.

The unique solution to the IVP therefore is y=1/
3

2
x¡ 3

16
+

19
16
e¡8x4

q
.

Armin Straub
straub@southalabama.edu

20



Solving simple 2nd order DEs

We have the following two useful substitutions for certain simple DEs of order 2:

� F (y 00; y 0; x)= 0 (2nd order with �y missing�)

Set u= y0=
dy

dx
. Then y 00= du

dx
. We get the first-order DE F

�
du

dx
; u; x

�
=0.

� F (y 00; y 0; y)= 0 (2nd order with �x missing�)

Set u= y0=
dy

dx
. Then y 00= du

dx
=
du

dy
� dy
dx
=
du

dy
�u. We get the first-order DE F

�
u
du

dy
; u; y

�
=0.

Example 41. Solve y 00=x¡ y 0.
Solution. We substitute u= y0, which results in the first-order DE u0= x¡u.
This DE is linear and, using our recipe (see below for the details), we can solve it to find u=x¡ 1+Ce¡x.

Since y 0=u, we conclude that the general solution is y=
Z
(x¡ 1+Ce¡x)dx=

1
2
x2¡ x¡Ce¡x+D.

Important comment. This is a DE of order 2. Hence, as expected, the general solution has two free parameter.
Solving the linear DE. To solve u0= x¡u (also see Example 31, where we had solved this DE before), we

(a) rewrite the DE as du
dx
+P (x)u=Q(x) with P (x)= 1 and Q(x)=x.

(b) The integrating factor is f(x)= exp
�Z

P (x)dx

�
= ex.

(c) Multiply the (rewritten) DE by f(x)= ex to get exdu
dx

+ exu

=
d
dx
[exu]

= xex.

(d) Integrate both sides to get (using integration by parts): exu=
Z
xexdx= xex¡ ex+C

Hence, the general solution of the DE for u is u=x¡ 1+Ce¡x, which is what we used above.

Example 42. (homework) Solve the IVP y 00=x¡ y 0, y(0)=1, y 0(0)= 2.

Solution. As in the previous example, we find that the general solution to the DE is y(x)= 1
2
x2¡x¡Ce¡x+D.

Using y 0(x)= x¡ 1+Ce¡x and y 0(0)=2, we find that 2=¡1+C. Hence, C=3.

Then, using y(x)= 1
2
x2¡ x¡ 3e¡x+D and y(0)= 1, we find 1=¡3+D. Hence, D=4.

In conclusion, the unique solution to the IVP is y(x)=
1

2
x2¡x¡ 3e¡x+4.

Example 43. (extra) Find the general solution to y 00=2yy 0.

Solution. We substitute u= y0=
dy

dx
. Then y 00= du

dx
=
du

dy
� dy
dx
=
du

dy
�u.

Therefore, our DE turns into u du

dy
=2yu.

Dividing by u, we get du
dy
=2y. [Note that we lose the solution u=0, which gives the singular solution y=C.]

Hence, u= y2+C. It remains to solve y 0= y2+C. This is a separable DE.
1

C+ y2
dy=dx. Let us restrict to C=D2> 0 here. (This means we will only find �half� of the solutions.)R 1

D2+ y2
dy=

1

D2

R 1

1+ (y/D)2
dy=

1

D
arctan(y/D)=x+A.

Solving for y, we find y=D tan(Dx+AD)=D tan(Dx+B). [B=AD]
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Notes for Lecture 10 Fri, 9/13/2024

Applications of DEs & Modeling

The exponential model of population growth

If P (t) is the size of a population (eg. of bacteria) at time t, then the rate of change dP

dt
might,

from biological considerations, be (nearly) proportional to P (t).
More down to earth, this is just saying �for a population 5 times as large, we expect 5 times as many babies�.
Say, we have a population of P = 100 and P 0= 3, meaning that the population changes by 3 individuals per
unit of time. By how much do we expect a population of P = 500 to change? (Think about it for a moment!)
Without further information, we would probably expect the population of P = 500 to change by 5 � 3 = 15
individuals per unit of time, so that P 0=15 in that case. This is what it means for P 0 to be proportional to P .
In formulas, it means that P 0/P is constant or, equivalently, that P 0= kP for a proportionality constant k.
Comment. �Population� might sound more specific than it is. It could also refer to rather different populations
such as amounts of money (finance) or amounts of radioactive material (physics).

For instance, thinking about an amount P (t) of money in a bank account at time t, we would also expect dP
dt

(the money per time that we gain from receiving interest) to be proportional to P (t).

The correspondingmathematical model is described by the DE dP

dt
=kP where k is the constant

of proportionality.

Example 44. Determine all solutions to the DE dP

dt
= kP .

Solution. We easily guess and then verify that P (t)=Cekt is a solution. (Alternatively, we can find this solution
via separation of variables or because this is a linear DE. Do it both ways!)
Moreover, it follows from the existence and uniqueness theorem that there cannot be further solutions. (Alter-
natively, we can conclude this from our solving process (separation of variables or our approach to linear DEs
only lose solutions when we divide by zero and we can consider those cases separately)).

Mathematics therefore tells us that the (only) solutions to this DE are given by P (t)=Cekt where
C is some constant.

Hence, populations satisfying the assumption from biology necessarily exhibit exponential growth.

The exponential model with growth rate k is

dP
dt

= kP :

The general solution is P (t)=Cekt where C =P (0).

Example 45. Let P (t) describe the size of a population at time t. Suppose P (0) = 100 and
P (1)= 300. Under the exponential model of population growth, find P (t).

Solution. P (t) solves the DE dP

dt
= kP and therefore is of the form P (t)=Cekt.

We now use the two data points to determine both C and k.

Cek�0=C = 100 and Cek= 100ek= 300. Hence k= ln(3) and P (t)= 100eln(3)t= 100 � 3t.
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The logistic model of population growth

If the population is constrained by resources, then dP

dt
=kP is not a good model. A model to take

that into account is dP

dt
= kP

�
1¡ P

M

�
. This is the logistic equation.

M is called the carrying capacity:

� Note that if P �M then 1¡ P

M
� 1 and we are back to the simpler exponential model. This means that

the population P will grow (nearly) exponentially if P is much less than the carrying capacity M .

� On the other hand, if P >M then 1¡ P

M
< 0 so that (assuming k > 0) dP

dt
< 0, which means that the

population P is shrinking if it exceeds the carrying capacity M .

Comment. If P (t) is the size of a population, then P 0/P can be interpreted as its per capita growth rate .
Note that in the exponential model we have that P 0/P = k is constant.
On the other hand, in the logistic model we have that P 0/P = k(1¡P /M) is a linear function.

The logistic model with growth rate k and carrying capacity M is

dP
dt

= kP

�
1¡ P

M

�
:

The general solution is P (t)= M

1+Ce¡kt
where C = M

P (0)
¡ 1.

Important. We will solve the logistic equation in detail in Example 48 to find the stated formula for P (t). At
this point, can you already see what technique we will be able to use? (We actually have two options!) Note
that, even if we couldn't solve the DE, we can always verify that the stated P (t) solves the DE by plugging in.

Example 46. Let P (t) describe the size of a population at time t. Under the logistic model of
population growth, what is lim

t!1
P (t)?

Solution.

� If k > 0, then e¡kt! 0 and it follows from P (t)=
M

1+Ce¡kt
that lim

t!1
P (t)=M .

In other words, the population will approach the carrying capacity in the long run.

� If k=0, then we simply have P (t)= M

1+C
. In other words, the population remains constant.

This is a corner case because the DE becomes dP
dt
=0.

� If k < 0, then e¡kt!1 and it follows that lim
t!1

P (t)= 0.

In other words, the population will approach extinction in the long run.

Comment. There is also the trivial corner case arising from P (0)= 0 (then our C would be infinite), in which
case P (t)= 0. We will always assume that we are not talking about a zero (or negative) population.

Example 47. (homework) A rising population is modeled by the equation dP

dt
= 400P ¡ 2P 2.

(a) When the population size stabilizes in the long term, how large will it be?

(b) Under which condition would the population size shrink?

(c) What is the population size when it is growing the fastest?

(d) If P (0)= 10, what is P (t)?
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Solution.

(a) Once the population reaches a stable level in the long term, we have dP
dt
=0 (no change in population size).

Hence, 0 = 400P ¡ 2P 2= 2P (200¡ P ) which implies that P = 0 or P = 200. Since the population is
rising, it will approach 200 in the long term.

Alternatively. Our DE matches the logistic equation dP

dt
= kP

�
1¡ P

M

�
with k= 400 and M = 200.

(b) The population size would shrink if dP
dt
< 0.

The DE tells us that is the case if and only if 400P ¡ 2P 2< 0 or, equivalently, if P >
400
2
= 200.

Comment. In the logistic model, the population shrinks if it exceeds the carrying capacity.

(c) This is asking when dP

dt
(the population growth) is maximal.

The DE is telling us that this growth is f(P )=400P ¡ 2P 2. This a parabola that opens to the bottom.
From Calculus, we know that it has a global maximum when f 0(P )= 0.
f 0(P )= 400¡ 4P =0 leads to P = 100.
Thus, the population is growing the fastest when its size is 100.
Comment. In the logistic model, the population is growing fastest when it is half the carrying capacity.

(d) We know that the general solution of the logistic equation is P (t)= M

1+Ce¡kt
=

200
1+Ce¡400t

.
Using P (0)= 10, we find that C =

200
10
¡ 1= 19.

Thus P (t)= 200
1+ 19e¡400t

.

Example 48. Solve the logistic equation dP

dt
= kP

�
1¡ P

M

�
.

Solution. This is a separable DE: 1

P
¡
1¡ P

M

� dP = kdt.

To integrate the left-hand side, we use partial fractions: 1

P
¡
1¡ P

M

�= 1

P
+

1/M

1¡ P

M

=
1

P
¡ 1

P ¡M .

After integrating, we obtain lnjP j ¡ lnjP ¡M j= kt+A.

Equivalently, ln
������ P

P ¡M

������= kt+A so that P

P ¡M
=�ekt+A=Bekt where B=�eA.

Solving for P , we conclude that the general solution is

P (t)=
BMekt

Bekt¡ 1
=

M

1+Ce¡kt
;

where we replaced the free parameter B with C=¡1/B.
Initial population. Note that the initial population is P (0)= M

1+C
. Equivalently, C= M

P (0)
¡1 which expresses

the free parameter C in terms of the initial population.
Comment. Note that B=�eA can be any real number except 0. However, we can easily check that B=0 also
gives us a solution to the DE (namely, the trivial solution P =0). This solution was �lost� when we divided by
P to separate variables.
Exercise. Note that the logistic equation is also a Bernoulli equation. As an alternative to separation of variables,
we can therefore solve it by transforming it to a linear DE via substitution.

Review of partial fractions. Recall that partial fractions tells us that fractions like p(x)

(x¡ r1)(x¡ r2)���
(with the

numerator of smaller degree than the denominator; and with the rj distinct) can be written as a sum of terms
of the form Aj

x¡ rj
for suitable constants Aj.

In our case, this tells us that 1

P (1¡P /M)
=
A

P
+

B

1¡P /M for certain constants A and B.

Multiply both sides by P and set P =0 to find A=1.
Multiply both sides by 1¡P /M and set P =M to find B=1/M . This is what we used above.

Armin Straub
straub@southalabama.edu

24



Notes for Lecture 11 Mon, 9/16/2024

Main challenge of modeling: a model has to be detailed enough to resemble the real world,
yet simple enough to allow for mathematical analysis.

Extending the exponential model. Observe that the exponential model of population growth can be written as

P 0

P
= constant:

Thinking purely mathematically (generally not a good idea for modeling!), to extend the model, it might be
sensible to replace constant (which we called k above) by the next simplest kind of function, namely a linear
function in P . The resulting DE is the logistic equation.
Comment. Can you put into words why we replace constant by a function of P rather than a function of t?
When would it be appropriate to add a dependence on t?
[A dependence on t would make sense if the �environment� changes over time. Without such a change, we expect
that a population (say, of bacteria in our lab) behaves this week just as it would next week. The �law� behind
its growth should not depend on t. The resulting differential equations are called autonomous.]

Review. The logistic equation is
dP
dt

= kP

�
1¡ P

M

�
.

Here, k is the growth rate and M is the carrying capacity.

The general solution is P (t)= M

1+Ce¡kt
where C = M

P (0)
¡ 1.

Example 49. In a city with a fixed population N , the time rate of change of the number P of
people who have heard a certain rumor is proportional to the product of P and N ¡P . Suppose
initially 10% have heard the rumor and after a week this number has grown to 20%. What
percentage will this number reach after one more week?
Solution. We are told that dP

dt
= P (N ¡P ) as well as P (0)= 0.1N and P (1)= 0.2N . We need P (2).

Note that this is a logistic equation dP

dt
= kP

�
1¡ P

N

�
with k= N and carrying capacity N .

It therefore has the general solution P (t)= N

1+Ce¡kt
.

Using P (0)= N

1+C
= 0.1N , we find that C =9.

Using P (1)= N

1+9e¡k
= 0.2N , we further find that e¡k= 4

9
.

We could solve for k but note that it is more pleasing to use e¡kt=(e¡k)t=
�
4

9

�
t
in our formula for P (t).

We conclude that P (t)= N

1+9
�
4

9

�
t .

In particular, P (2)= N

1+9 � 1681
=

9

25
N which is 36%.

Example 50. A scientist is claiming that a certain population P (t) follows the logistic model of
population growth. How many data points do you need to begin to verify that claim?

Solution. The general solution P (t)= M

1+Ce¡kt
to the logistic equation has 3 parameters.

Hence, we need 3 data points just to solve for their values.
Once we have 4 or more data points, we are able to test whether P (t) conforms to the logistic model.
Important comment. Complicated models tend to have more degrees of freedom, which makes it easier to fit
them to real world data (even if the model is not actually particularly appropriate). We therefore need to be
cognizant about how much evidence is needed to decide that a given model is appropriate for the data.
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Further population models

Let P (t) be the size of the population that we wish to model at time t.

Denote with �(t) and �(t) the birth and death rate at time t, measured in number of births or
deaths per unit of population per unit of time.

In the time interval [t; t+�t], we have that

�P � �(t)P (t)�t¡ �(t)P (t)�t:

Comment. The reason that this is not an exact equation is that the rates �(t) and �(t) are allowed to change with
t. In the above, we used these rates at time t for all times in [t; t+�t]. This is a good approximation if�t is small.

Divide both sides by �t and let �t! 0 to obtain the general differential equation

dP
dt

=(�(t)¡ �(t))P:

Given certain scenarios, we now make corresponding reasonable choices for �(t) and �(t).

� (basic) If the rates �(t) and �(t) are constant over time, the DE is dP
dt
=(� ¡ �)P .

This is the exponential model of population growth.

� (limited supply) If supply is limited, the birth rate will decrease as P increases. The simplest such
relationship would be a linear dependence, which would take the form �(t)= �0¡ �1P .
On the other hand, we still assume that �(t) is constant. (However, depending on circumstances, it could
also be reasonable to assume that �(t) increases as P increases.)

With these assumptions, the corresponding DE is dP
dt
=(�0¡ �1P ¡ �)P .

This is the logistic equation dP

dt
= kP (1¡P /M) with k= �0¡ � and k

M
= �1.

� (rare isolated species) If the population consists of rare and isolated specimen which rely on chance
encounters to reproduce, then it is reasonable to assume that the birth rate �(t) is proportional to P (t)
(larger P (t) means more possibilities for chance encounters). Once more, we assume that �(t) constant.

With these assumptions, the corresponding DE is dP
dt
=(kP ¡ �)P .

This is, again, the logistic equation.

� (rare isolated species with very long life) As before, for a rare isolated population, it is reasonable to
assume that �(t) is proportional to P (t). If, in addition, our specimen have very long life, then we would
assume that �(t)= 0.

The corresponding DE is dP
dt
= kP 2. Solutions are P (t)= 1

C ¡ kt where P (0)=1/C. (Do it!)

Comment. Note that P (t)!1 as t!C/k. This explosion (which implies population growth beyond
exponential growth) emphasizes that we can only use the DE while our initial assumptions are satisfied.
Here, the DE is no longer appropriate when our species is no longer rare because P (t) is too large.

� (spread of contagious incurable virus) Let P (t) count the number of infected population units among a
(constant) total of N . Since the virus is incurable, we have �(t)=0. On the other hand, it is reasonable
to assume that �(t) is proportional to N ¡P (the number of people that can still be infected).

The resulting DE is dP
dt
= kP (N ¡P ). Once again, this is the logistic equation.

� (harvesting) Suppose that h population units are harvested each unit of time.

Then the DE becomes dP
dt
=(�(t)¡ �(t))P ¡h.

For instance. dP
dt
=kP ¡h has the solution P (t)=Cekt+h/k. In that case, we get exponential growth

if C>0. Note that P (0)=C+h/k. In terms of the initial population P (0), we therefore get exponential
growth if P (0)>h/k. (Also see next example!)
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Example 51. A biotech company is growing certain microorganisms in the lab. From experience
they know that the growth (number of organisms per day) of the microorganisms is well modeled
by an exponential model with proportionality constant k=5 (per day). What is the optimal rate (in
number of organisms per day) at which the company can continually harvest the microorganisms?

Solution. (long version via solving the DE) Without harvesting, the growth is modeled by dP

dt
= 5P (the

exponential model). Here, P is the number of organisms and t measures time in days. (Always think about your
units in applications!)
If harvesting occurs at the rate of h number of organisms per day, the population model needs to be adjusted to

dP
dt

=5P ¡h:

Since h is a constant, we can solve this DE using separation of variables. Alternatively, the DE is linear and we
can therefore solve it using an integrating factor. For practice, we do both:

� (separation of variables) Integrating 1

5P ¡hdP = dt, we find 1

5
lnj5P ¡ hj= t+C, which we simplify

to j5P ¡hj= e5t+5C. It follows that 5P ¡h=�e5te5C=Be5t where we wrote B=�e5C (note that
the sign is fixed and cannot change).

Thus, the general solution of the DE is P (t)= h

5
+Ae5t (where we wrote A= B

5
).

� (integrating factor) Since this is a linear DE, we can solve it as follows:

� We write the DE in the form dP

dt
¡ 5P =¡h.

� The integrating factor is f(t)= exp(
R
¡5dt)= e¡5t.

� Multiply the (rewritten) DE by f(t) to get e¡5t
dP
dt
¡ 5e¡5tP

=
d
dt
[e¡5tP ]

=¡he¡5t.

� Integrate both sides to get e¡5tP =¡h
Z
e¡5tdt=

h
5
e¡5t+C.

Hence the general solution to the DE is P (t)= h

5
+Ce5t.

In either case, we found that P (t)= h

5
+Ce5t. In order to be able to continually harvest, we need to make sure

that C > 0. In terms of the initial population, we get P (0)= h

5
+C so that C =P (0)¡ h

5
.

Thus the conditionC>0 becomes P (0)¡ h

5
>0 or, equivalently, h65P (0). Thus, the optimal rate of harvesting

is h=5P (0).

Solution. (short version) As before, we observe that, if harvesting occurs at the rate of h number of organisms
per day, then our population model is

dP
dt

=5P ¡h:

In order to be able to continually harvest, we need to make sure that dP
dt
> 0 (clearly, this is sufficient; we can

also see that it is necessary since a decreased population should result in a lower optimal harvesting rate).

We thus get the condition 5P ¡h>0. Since the population is not decreasing (because dP
dt
>0), this is equivalent

to 5P (0)¡h>0 or, equivalently, h65P (0). Again, we conclude that the optimal rate of harvesting is h=5P (0).
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Notes for Lecture 12 Wed, 9/18/2024

Mixing problems

Example 52. A tank contains 20gal of pure water. It is filled with brine (containing 5lb/gal salt)
at a rate of 3gal/min. At the same time, well-mixed solution flows out at a rate of 2gal/min. How
much salt is in the tank after t minutes?

Solution.
(Part I. determining a DE) Let x(t) denote the amount of salt (in lb) in the tank after time t (in min).

At time t, the concentration of salt (in lb/gal) in the tank is x(t)

V (t)
where V (t) = 20+ (3¡ 2)t= 20+ t is the

volume (in gal) in the tank.

In the time interval [t; t+�t]: �x� 3 � 5 ��t¡ 2 � x(t)
V (t)

��t.

Hence, x(t) solves the IVP dx

dt
= 15¡ 2 � x

20+ t
with x(0)=0.

Comment. Can you explain why the equation for �x is only approximate but why the final DE is exact?
[Hint: x(t)/V (t) is the concentration at time t but we are using it for �x at other times as well.]

(Part II. solving the DE) Since this is a linear DE, we can solve it as follows:

� Write the DE in the standard form as dx
dt
+

2

20+ t
x= 15.

� The integrating factor is f(t)= exp
�R 2

20+ t
dt
�
= exp(2lnj20+ tj)= (20+ t)2.

� Multiply the DE (in standard form) by f(t)= (20+ t)2 to get (20+ t)2
dx
dt

+2(20+ t)x

=
d
dt
[(20+t)2x]

= 15(20+ t)2.

� Integrate both sides to get (20+ t)2x= 15
Z
(20+ t)2dt=5(20+ t)3+C.

Hence the general solution to the DE is x(t)= 5(20+ t)+
C

(20+ t)2
. Using x(0)= 0, we find C =¡5 � 203.

We conclude that, after t minutes, the tank contains x(t)= 5(20+ t)¡ 5 � 203
(20+ t)2

pounds of salt.

Comment. As a consequence, x(t)� 5(20+ t) = 5V (t) for large t. Can you explain why that makes perfect
sense and why we could have predicted this from the very beginning (without deriving a DE and solving it)?
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Notes for Lecture 13 Fri, 9/20/2024

Acceleration�velocity models

To model a falling object, we let y(t) be its height at time t.

Then physics has names for y 0(t) and y00(t): these are the velocity and the acceleration.

Physics tells us that objects fall due to gravity (and that it makes already-falling objects fall faster;
in other words, gravity accelerates falling objects). Physicists have measured that, on earth, the
the gravitational acceleration is g� 9.81m/s2.
If we only take earth's gravitation into account, then the fall is therefore modeled by

y 00(t)=¡g:

Example 53. A ball is dropped from a 100m tall building. How long until it reaches the ground?
What is the speed when it hits the ground?
Solution. Let y(t) be the height (in meters) at which the ball is at time t (in seconds).
As above, physics tells us that an object falling due to gravity (and ignoring everything else) satisfies the DE
y 00=¡g where g� 9.81. We further know the initial values y(0)= 100, y 0(0)= 0.
Substituting v= y0 in the DE, we get v 0=¡g. This DE is solved by v(t)=¡gt+C.

Hence, y(t)=
R
v(t)dt=¡1

2
gt2+Ct+D.

The initial conditions y(0)= 100, y 0(0)=0 tell us that D= 100 and C =0.
Thus y(t)=¡1

2
gt2+ 100.

The ball reaches the ground when y(t)=¡1

2
gt2+ 100=0, that is after t= 200/g

p
� 4.52 seconds.

The speed then is jy 0(4.52)j � 44.3m/s.

For many applications, one needs to take air resistance into account.
This is actually less well understood than one might think, and the physics quickly becomes rather complicated.
Typically, air resistance is somewhere in between the following two cases:

� Under certain assumptions, physics suggests that air resistance is proportional to the square
of the velocity.
Comment. A simplistic way to think about this is to imagine the falling object to bump into (air)
particles; if the object falls twice as fast, then the momentum of the particles it bumps into is twice as
large and it bumps into twice as many of them.

� In other cases such as �relatively slowly� falling objects, one might empirically observe that
air resistance is proportional to the velocity itself.
Comment. One might imagine that, at slow speed, the falling object doesn't exactly bump into particles
but instead just gently pushes them aside; so that at twice the speed it only needs to gently push twice
as often.
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Example 54. When modeling the (slow) fall of a parachute, physics suggests that the air resis-
tance is roughly proportional to velocity. If y(t) is the parachute's height at time t, then the
corresponding DE is y 00=¡g¡ �y 0 where �> 0 is a constant.
Comment. Note that ¡�y 0 > 0 because y 0 < 0. Thus, as intended, air resistance is acting in the opposite
direction as gravity and slowing down the fall.

Determine the general solution of the DE.
Solution. Substituting v= y 0, the DE becomes v 0+ �v=¡g.
This is a linear DE. To solve it, we determine that the integrating factor is exp(

R
�dt)= e�t.

Multiplying the DE with that factor and integrating, we obtain e�tv=
R
¡ge�tdt=¡g

�
e�t+C.

Hence, v(t)=¡g

�
+Ce¡�t.

Correspondingly, the general solution of the DE is y(t)=
R
v(t)dt=¡g

�
t¡ C

�
e¡�t+D.

Comment. Note that lim
t!1

v(t)=¡g
�
. In other words, the terminal velocity is v1=¡g

�
.

This is an interesting mathematical consequence of the DE. (And important for the idea behind a parachute!)
Note that, if we know that there is a terminal speed, then we can actually determine its value v1 from the DE
without solving it by setting v 0=0 (because, once the terminal speed is reached, the velocity does not change
anymore) in v 0+ �v=¡g. This gives us �v1=¡g and, hence, v1=¡g/� as above.

Armin Straub
straub@southalabama.edu

30



Notes for Lecture 14 Mon, 9/23/2024

Numerically �solving� DEs: Euler's method
Recall that the general form of a first-order initial value problem is

y 0= f(x; y); y(x0)= y0:

Further recall that, under mild assumptions on f(x; y), such an IVP has a unique solution y(x).
We have learned some techniques for (exactly) solving DEs. On the other hand, many DEs that
arise in practice cannot be solved by these techniques (or more fancy ones).
Instead, it is common in practice to approximate the solution y(x) to our IVP. Euler's method is
the simplest example of how this can done. The key idea is to locally approximate y(x) by tangent
lines:

Example 55. Suppose y solves the IVP y 0= f(x; y) with y(x0)= y0. Using the tangent line at
(x0; y0), find an approximation for y(x1) where x1=x0+h.
The idea is that we choose the step size h to be sufficiently small so that the approximation is good enough.

Solution. The tangent line at (x0; y0) has slope y 0(x0)= f(x0; y0) which is a number we can compute without
solving the DE for y(x). Hence, the equation for the tangent line is T (x)= y0+ f(x0; y0)(x¡ x0).
We now use this tangent line as an approximation for the solution of the DE to find

y(x1)�T (x1)= y0+ f(x0; y0)(x1¡ x0)= y0+ f(x0; y0)h:

At this point, we have gone from our initial point (x0; y0) to a next (approximate) point (x1; y1).
We now repeat what we did to get a third point (x2; y2) with x2 = x1 + h. Continuing in this
way, we obtain Euler's method:

(Euler's method) To approximate the solution y(x) of the IVP y 0= f(x; y), y(x0) = y0, we
start with the point (x0; y0) and a step size h. We then compute:

xn+1 = xn+h
yn+1 = yn+hf(xn; yn)

Example 56. Consider, again, the DE y 0=¡x/y.
We earlier produced the slope field on the right. We also used separation
of variables to find that the solutions are circles y(x)=� r2¡x2

p
.

We know that the unique solution to the IVP with y(0) = 2 is
y(x) = 4¡x2

p
. On the other hand, approximate the solution

using Euler's method with h=1 and 2 steps.
Solution. First, use just the slope field to sketch the 2 approximate points.
On the other hand, applying Euler's method with f(x; y)=¡x/y:

x0=0 y0=2

x1=1 y1= y0+hf(x0; y0)= 2+1 �
�
¡0
2

�
=2

x2=2 y2= y1+hf(x1; y1)= 2+1 �
�
¡1
2

�
=
3
2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Comment. These are not good approximations! (To get better approximations, the step size must be chosen
much smaller.) For comparison, the true values are y(1) = 3

p
� 1.73 and y(2) = 0. Also note that we would

get �bogus� values if we take another step to approximate y(3) (whereas the true solution only exists until x=2).
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Example 57. Consider the IVP dy

dx
=(2x¡ 3y)2+ 2

3
, y(1)= 1

3
.

(a) Approximate the solution y(x) for x2 [1; 2] using Euler's method with 2 steps.

(b) Approximate the solution y(x) for x2 [1; 2] using Euler's method with 3 steps.

(c) Solve this IVP exactly. Compare the values at x=2.

Solution.

(a) The step size is h= 2¡ 1
2

=
1

2
. We apply Euler's method with f(x; y)= (2x¡ 3y)2+ 2

3
:

x0=1 y0=
1
3

x1=
3
2

y1= y0+hf(x0; y0)=
1
3
+
1
2
�
��

2 � 1¡ 3 � 1
3

�
2

+
2
3

�
=
7
6

x2=2 y2= y1+hf(x1; y1)=
7
6
+
1
2
� 11
12

=
13
8

In particular, the approximation for y(2) is y2=
13
8
= 1.625.

(b) The step size is h= 2¡ 1
3

=
1

3
. We again apply Euler's method with f(x; y)= (2x¡ 3y)2+ 2

3
:

x0=1 y0=
1
3

x1=
4
3

y1= y0+hf(x0; y0)=
1
3
+
1
3
�
��

2 � 1¡ 3 � 1
3

�
2

+
2
3

�
=
8
9

x2=
5
3

y2= y1+hf(x1; y1)=
8
9
+
1
3
� 2
3
=
10
9

x3=2 y3= y2+hf(x2; y2)=
10
9
+
1
3
� 2
3
=
4
3

In particular, the approximation for y(2) is y3=
4

3
� 1.333.

(c) We solved this IVP in Example 38 using the substitution u=2x¡ 3y followed by separation of variables.
We found that the unique solution of the IVP is y(x)= 2

3
x¡ 1

3(3x¡ 2) .

In particular, the exact value at x=2 is y(2)= 5

4
= 1.25.

We observe that our approximations for y(2) = 1.25 improved from 1.625 to 1.333 as we increased the
number of steps (equivalently, we decreased the step size h from 1

2
to 1

3
).

For comparison. With 10 steps (so that h= 1

10
), the approximation improves to y(2)� 1.259.
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Notes for Lecture 15 Wed, 9/25/2024

Preview: Solving linear differential equations with constant coefficients

Let us have another look at Example 10. Note that the DE is a second-order linear differential
equation with constant coefficients. Our upcoming goal will be to solve all such equations.

Example 58. Find the general solution to y 00= y 0+6y.
Solution. We look for solutions of the form erx.
Plugging erx into the DE, we get r2erx= rerx+6erx which simplifies to r2¡ r¡ 6=0.
This is called the characteristic equation. Its solutions are r=¡2; 3 (the characteristic roots).
This means we found the two solutions y1= e¡2x, y2= e3x.
The general solution to the DE is C1e¡2x+C2e

3x.
Comment. In the final step, we used an important principle that is true for linear (!) homogeneous DEs. Namely,
if we have solutions y1; y2; ::: then any linear combination C1y1+C2y2+ ::: is a solution as well. We will discuss
this soon but, for now, check that C1e¡2x+C2e

3x is indeed a solution by plugging it into the DE.

Example 59. (extra) Find the general solution to y 000= y 00+6y 0.
Solution. We look for solutions of the form erx.
Plugging erx into the DE, we get r3erx= r2 erx+6rerx which simplifies to r3¡ r2¡ 6r= r(r2¡ r¡ 6)= 0.
As in Example 58, r2¡ r¡ 6=0 has the solutions r=¡2; 3.
Overall, r(r2¡ r¡ 6)=0 has the three solutions ¡2; 3; 0.
This means we found the three solutions y1= e¡2x, y2= e3x, y3= e0x=1.
The general solution to the DE is C1 e¡2x+C2 e

3x+C3.

Alternatively. We can substitute u= y 0, in which case the new DE is u00=u0+6u. From Example 58, we know
that u=C1e

¡2x+C2e
3x.

Hence, the general solution of the initial DE is y=
R
udx=¡1

2
C1e

¡2x+
1

3
C2e

3x+C.

Note that we can set D1=¡1

2
C1, D2=

1

3
C2, D3=C to write this as D1 e

¡2x+D2 e
3x+D3, which matches

our earlier solution.

Linear DEs of higher order

The most general linear first-order DE is of the form A(x)y 0+B(x)y+C(x)=0. Any such DE
can be rewritten in the form y 0+P (x)y= f(x) by dividing by A(x) and rearranging.

We have learned how to solve all of these using an integrating factor.

Linear DEs of order n are those that can be written in the form

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y= f(x):

The corresponding homogeneous linear DE is the DE

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y=0;

and it plays an important role in solving the original linear DE.

Important note. A linear DE is homogeneous if and only if the zero function y(x)= 0 is a solution.
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Advanced comment. As we observed in the first-order case, if I is an interval on which all the Pj(x) as well as
f(x) are continuous, then for any a2 I the IVP with y(a) = b0, y 0(a) = b1, :::, y(n¡1)(a) = bn¡1 always has
a unique solution (which is defined on all of I).

(general solution of linear DEs) For a linear DE of order n, the general solution always takes
the form

y(x)= yp(x)+C1y1(x)+ :::+Cn yn(x);

where yp is any single solution (called a particular solution) and y1; y2; :::; yn are solutions to
the corresponding homogeneous linear DE.

Comment. If the linear DE is already homogeneous, then the zero function y(x) = 0 is a solution and we can
use yp=0. In that case, the general solution is of the form y(x)=C1y1+C2y2+ ���+Cnyn.

Why? This structure of the solution follows from the observation in the next example.

Example 60. Suppose that y1 solves y 00 + P (x)y 0 + Q(x)y = f(x) and that y2 solves
y 00+P (x)y 0+Q(x)y= g(x) (note that the corresponding homogeneous DE is the same).

Show that 7y1+4y2 solves y 00+P (x)y 0+Q(x)y=7f(x)+ 4g(x).
Solution. (7y1+4y2)

00+P (x)(7y1+4y2)
0+Q(x)(7y1+4y2)

= 7fy100+P (x)y1
0 +Q(x)y1g+4fy200+P (x)y2

0 +Q(x)y2g=7 � f(x)+ 4 � g(x)

Comment. Of course, there is nothing special about the coefficients 7 and 4.
Important comment. In particular, if both f(x) and g(x) are zero, then 7f(x) + 4g(x) is zero as well. This
shows that homogeneous linear DEs have the important property that, if y1 and y2 are two solutions, then any
linear combination C1 y1+C2 y2 is a solution as well.

The upshot is that this observation reduces the task of finding the general solution of a homoge-
neous linear DE to the task of finding n (sufficiently) different solutions.

Example 61. (extra) The DE x2y 00+2xy 0¡ 6y=0 has solutions y1=x2, y2=x¡3.

(a) Determine the general solution

(b) Solve the IVP with y(2)= 10, y 0(2)= 15.

Solution.

(a) Note that this is a homogeneous linear DE of order 2.
Hence, given the two solutions, we conclude that the general solution is y(x) = Ax2 + Bx¡3 (in this
case, the particular solution is yp=0 because the DE is homogeneous).

(b) Using y 0(x)= 2Ax¡ 3Bx¡4, the two initial conditions allow us to solve for A and B:
Solving y(2)= 4A+B/8= 10 and y 0(2)= 4A¡ 3/16B= 15 for A and B results in A=3, B=¡16.
So the unique solution to the IVP is y(x)= 3x2¡ 16/x3.

Homogeneous linear DEs with constant coefficients

Let us start with another example like Examples 10 and 58. This time we also approach this
computation using an operator approach that explains further what is going on (and that will be
particularly useful when we discuss inhomogeneous equations).

An operator takes a function as input and returns a function as output. That is exactly what the derivative does.
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In the sequel, we write D= d

dx
for the derivative operator.

For instance. We write y 0= d

dx
y=Dy as well as y 00= d2

dx2
y=D2 y.

Example 62. Find the general solution to y 00¡ y 0¡ 2y=0.
Solution. (our earlier approach) Let us look for solutions of the form erx.

Plugging erx into the DE, we get r2erx¡ rerx¡ 2erx=0.
Equivalently, r2¡ r¡ 2=0. This is the characteristic equation. Its solutions are r=2;¡1.
This means we found the two solutions y1= e2x, y2= e¡x.
Since this a homogeneous linear DE, the general solution is y=C1e

2x+C2e
¡x.

Solution. (operator approach) y00¡ y 0¡ 2y=0 is equivalent to (D2¡D¡ 2)y=0.

Note that D2¡D¡ 2= (D¡ 2)(D+1) is the characteristic polynomial.
Observe that we get solutions to (D¡ 2)(D+1)y=0 from (D¡ 2)y=0 and (D+1)y=0.

(D¡ 2)y=0 is solved by y1= e2x, and (D+1)y=0 is solved by y2= e¡x; as in the previous solution.
Again, we conclude that the general solution is y=C1e

2x+C2e
¡x.

Set D = d

dx
. Every homogeneous linear DE with constant coefficients can be written as

p(D)y=0, where p(D) is a polynomial in D, called the characteristic polynomial.

For instance. y 00¡ y0¡ 2y=0 is equivalent to Ly=0 with L=D2¡D¡ 2.

Example 63. Solve y 00¡ y 0¡ 2y=0 with initial conditions y(0)= 4, y 0(0)=5.
Solution. From Example 62, we know that the general solution is y(x)=C1e

2x+C2e
¡x.

Using y 0(x)= 2C1e
2x¡C2e¡x, the initial conditions result in the two equations C1+C2=4, 2C1¡C2=5.

Solving these we find C1=3, C2=1.
Hence the unique solution to the IVP is y(x)= 3e2x+ e¡x.

Example 64.

(a) Check that y=¡3x is a solution to y 00¡ y 0¡ 2y=6x+3.
Comment. We will soon learn how to find such a solution from scratch.

(b) Using the first part, determine the general solution to y 00¡ y 0¡ 2y=6x+3.

(c) Determine f(x) so that y=7x2 solves y 00¡ y 0¡ 2y= f(x).
Comment. This is how you can create problems like the ones in the first two parts.

Solution.

(a) If y =¡3x, then y 0=¡3 and y 00= 0. Plugging into the DE, we find 0¡ (¡3)¡ 2 � (¡3x) = 6x+ 3,
which verifies that this is a solution.

(b) This is an inhomogeneous linear DE. From Example 62, we know that the corresponding homogeneous
DE has the general solution C1e2x+C2e

¡x.
From the first part, we know that ¡3x is a particular solution.
Combining this, the general solution to the present DE is ¡3x+C1e

2x+C2e
¡x.

(c) If y=7x2, then y 0= 14x and y 00= 14 so that y 00¡ y 0¡ 2y= 14¡ 14x¡ 14x2.
Thus f(x)= 14¡ 14x¡ 14x2.
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Notes for Lecture 16 Fri, 9/27/2024

Spotlight on the exponential function

Example 65. Solve y 0= ky where k is a constant.
Solution. (experience) At this point, we can probably see that y(x)= ekx is a solution.
In fact, the general solution is y(x)=Cekx.
That there cannot be any further solutions follows from the existence and uniqueness theorem (see next example).

Solution. (separation of variables) Alternatively, we can solve the DE using separation of variables.

Express the DE as dy

dx
= ky, then write it as 1

y
dy= kdx (note that we just lost the solution y=0).

Integrating gives lnjy j= kx+D, hence jy j= ekx+D.

Since the RHS is never zero, y =�ekx+D = Cekx (with C =�eD). Finally, note that C = 0 corresponds to
the singular solution y=0 that we lost. In summary, the general solution is Cekx.

Example 66. Consider the IVP y 0=ky, y(a)= b. Discuss existence and uniqueness of solutions.

Solution. The IVP is y 0= f(x; y) with f(x; y)= ky. We compute that @

@y
f(x; y)= k.

We observe that both f(x; y) and @

@y
f(x; y) are continuous for all (x; y).

Hence, for any initial conditions, the IVP locally has a unique solution by the existence and uniqueness theorem.
Comment. As a consequence, there can be no other solutions to the DE y 0 = ky than the ones of the form
y(x)=Cekx. Why?! [Assume that y(x) satisfies y 0=ky and let (a; b) any value on the graph of y. Then y(x)
solves the IVP y0=ky, y(a)= b; but so does Cekx with C= b/eka. The uniqueness implies that y(x)=Cekx.]

In particular, we have the following characterization of the exponential function:

ex is the unique solution to the IVP y 0= y, y(0)= 1.

Comment. Note that, for instance, d

dx
2x= ln(2) 2x. (This follows from 2x= eln(2

x)= exln(2).)
Since ln= loge, this means that we cannot avoid the natural base e�2.718 even if we try to use another base.

Euler's method applied to ex

Example 67. Consider the IVP y 0= y, y(0) = 1. Approximate the solution y(x) for x 2 [0; 1]
using Euler's method with 4 steps. In particular, what is the approximation for y(1)?
Comment. Of course, the real solution is y(x)= ex. In particular, y(1)= e� 2.71828.

Solution. The step size is h= 1¡ 0
4

=
1

4
. We apply Euler's method with f(x; y)= y:

x0=0 y0=1

x1=
1
4

y1= y0+hf(x0; y0)= 1+
1
4
� 1= 5

4
= 1.25

x2=
1
2

y2= y1+hf(x1; y1)=
5
4
+
1
4
� 5
4
=
52

42
= 1.5625

x3=
3
4

y3= y2+hf(x2; y2)=
52

42
+
1
4
� 5
2

42
=
53

43
� 1.9531

x4=1 y4= y3+hf(x3; y3)=
53

43
+
1
4
� 5
3

43
=
54

44
� 2.4414

In particular, the approximation for y(1) is y4� 2.4414.

Comment. Can you see that, if instead we start with h= 1

n
, then we similarly get xi=

(n+1)i

ni
for i=0;1; :::; n?

In particular, y(1)� yn=
(n+1)n

nn
=
�
1+

1

n

�n
! e as n!1. Do you recall how to derive this final limit?

Example 68. (cont'd) Consider the IVP y 0 = y, y(0) = 1. Approximate the solution y(x) for
x 2 [0; 1] using Euler's method with n steps for several values of n. In each case, what is the
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approximation for y(1)?
Solution. Since the real solution is y(x)= ex so that, in particular, the exact solution is y(1)= e� 2.71828.
We proceed as we did in Example 67 in the case n=4 and apply Euler's method with f(x; y)= y:

xn+1 = xn+h

yn+1 = yn+h f(xn; yn)

=yn

=(1+h)yn

We observe that it follows from yn+1= (1+ h)yn that yn= (1+ h)ny0. Since y0=1 and h= 1¡ 0
n

=
1

n
, we

conclude that

xn=1; yn=

�
1+

1
n

�n
:

[For instance, for n=4, we get x4=1, y4=
�
5

4

�
4
� 2.4414 as in Example 67.]

In particular, our approximation for y(1) is
�
1+

1

n

�n
.

Here are a few values spelled out:

n=1:

�
1+

1
n

�n
=2

n=4:

�
1+

1
n

�n
= 2.4414:::

n= 12:
�
1+

1
n

�n
= 2.6130:::

n= 100:
�
1+

1
n

�n
= 2.7048:::

n= 365:
�
1+

1
n

�n
= 2.7145:::

n= 1000:
�
1+

1
n

�n
= 2.7169:::

n!1:

�
1+

1
n

�n
! e= 2.71828:::

We can see that Euler's method converges to the correct value as n!1. On the other hand, we can see that it
doesn't converge impressively fast. That is why, for serious applications, one usually doesn't use Euler's method
directly but rather higher-order methods derived from the same principles (such as Runge�Kutta methods).

Interpretation. Note that we can interpret the above values in terms of compound interest. We start with initial
capital of y(0)=1 and we are interested in the capital y(1) after 1 year if we receive interest at an annual rate
of 100%:

� If we receive a single interest payment at the end of the year, then y(1)= 2 (case n=1 above).

� If we receive quarterly interest payments of 100%
4

=25% each, then y(1)=(1.25)4=2.441::: (case n=4).

� If we receive monthly interest payments of 100%
12

=
1

12
each, then y(1)= 2.6130::: (case n= 12).

� If we receive daily interest payments of 100%
365

=
1

365
each, then y(1)= 2.7145::: (case n= 365).

It is natural to wonder what happens if interest payments are made more and more frequently. Well, we already
know the answer! If interest is compounded continuously, then we have e in our bank account after one year.

Challenge. Can you evaluate the limit limn!1
�
1+

1

n

�n
using your Calculus I skills?
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Notes for Lecture 17 Fri, 10/4/2024

Review. Every homogeneous linear DE with constant coefficients can be written as p(D)y =
0, where D = d

dx
and p(D) is the characteristic polynomial polynomial. Each root r of the

characteristic polynomial gives us one solution, namely y= erx, of the DE.

Example 69.

(a) Determine the general solution of y 000+7y 00+ 14y 0+8y=0.

(b) Determine the general solution of y(4)+7y 000+ 14y 00+8y 0=0.

Solution.

(a) This DE is of the form p(D) y=0 with characteristic polynomial p(D)=D3+7D2+ 14D+8.
The characteristic polynomial factors as p(D)= (D+1)(D+2)(D+4).

Hence, we found the solutions y1 = e¡x, y2 = e¡2x, y3 = e¡4x. Those are enough (independent!)
solutions for a third-order DE. The general solution therefore is y(x)=C1 e

¡x+C2 e
¡2x+C3 e

¡4x.

(b) The DE now is of the form p(D) y=0 with characteristic polynomial p(D)=D(D3+7D2+14D+8).
Hence, the characteristic polynomial factors as p(D) = D(D + 1)(D + 2)(D + 4) and we find the
additional solution y4= e0x=1. Thus, the general solution is y(x)=C1 e

¡x+C2 e
¡2x+C3 e

¡4x.
Comment. If we didn't know about roots of characteristic polynomials, an alternative approach would be
to substitute u= y 0, resulting in the DE u000+7u00+ 14u0+8u=0. From the first part, we know that
u(x)=C1 e

¡x+C2 e
¡2x+C3e

¡4x. Hence, y(x)=
R
u(x)dx=¡C1 e¡x¡ 1

2
C2e

¡2x¡ 1

4
C3 e

¡4x+C.
Make sure you see that this is an equivalent way of presenting the general solution! (For instance, since C3
can be any constant, it doesn't make a difference whether we write ¡1

4
C3 or C3. The latter is preferable

unless the ¡1

4
is useful for some purpose.)

Example 70. Determine the general solution of y 000¡ y 00¡ 4y 0+4y=0.
Solution. This DE is of the form p(D) y=0 with characteristic polynomial p(D)=D3¡D2¡ 4D+4.
The characteristic polynomial factors as p(D)= (D¡ 1)(D¡ 2)(D+2).

Hence, we found the solutions y1= ex, y2= e2x, y3= e¡2x. Those are enough (independent!) solutions for a
third-order DE. The general solution therefore is y(x)=C1 e

x+C2 e
2x+C3 e

¡2x.

In this manner, we are able to solve any homogeneous linear DE of order n with constant coeffi-
cients provided that there are n different roots r (each giving rise to one solution erx).

One issue is that roots might be repeated. In that case, we are currently missing solutions. The following example
suggests how to get our hands on the missing solutions.

Example 71. Determine the general solution of y 000=0.
Solution. We know from Calculus that the general solution is y(x)=C1+C2x+C3x

2.

Solution. (looking ahead) The characteristic polynomial p(D) =D3 has roots 0; 0; 0. By Theorem 72 below,
we have the solutions y(x)=xje0x=xj for j=0;1;2, so that the general solution is y(x)=C1+C2x+C3x

2.

Armin Straub
straub@southalabama.edu

38



Theorem 72. Consider the homogeneous linear DE with constant coefficients p(D)y=0.

� If r is a root of the characteristic polynomial and if k is its multiplicity, then k (inde-
pendent) solutions of the DE are given by xjerx for j=0; 1; :::; k¡ 1.

� Combining these solutions for all roots, gives the general solution.
This is because the order of the DE equals the degree of p(D), and a polynomial of degree n has (counting
with multiplicity) exactly n (possibly complex) roots.

In the complex case. Likewise, if r=a� bi are roots of the characteristic polynomial and if k is its multiplicity,
then 2k (independent) solutions of the DE are given by xjeaxcos(bx) and xjeaxsin(bx) for j=0; 1; :::; k¡ 1.
This case will be discussed next time.

Proof. Let r be a root of the characteristic polynomial of multiplicity k. Then p(D)= q(D) (D¡ r)k.
We need to find k solutions to the simpler DE (D¡ r)ky=0.
It is natural to look for solutions of the form y= c(x)erx.
[This idea is called variation of constants since we know that this is a solution if c(x) is a constant.]

Note that (D¡ r)[c(x)erx] = (c0(x)erx+ c(x)rerx)¡ rc(x)erx= c0(x)erx.

Repeating, we get (D ¡ r)2[c(x)erx] = (D ¡ r)[c 0(x)erx] = c 00(x)erx and, eventually, (D ¡ r)k[c(x)erx] =

c(k)(x)erx.
In particular, (D¡ r)ky=0 is solved by y= c(x)erx if and only if c(k)(x)= 0.

The DE c(k)(x)=0 is clearly solved by xj for j=0;1; :::;k¡1, and it follows that xjerx solves the original DE. �

Example 73. Determine the general solution of y 000¡ 3y 0+2y=0.
Solution. The characteristic polynomial p(D)=D3¡ 3D+2= (D¡ 1)2(D+2) has roots 1; 1;¡2.
By Theorem 72, the general solution is y(x)= (C1+C2x)e

x+C2e
¡2x.

Example 74. (homework) Solve the IVP y 000=4y 00¡4y 0 with y(0)=4, y 0(0)=0, y 00(0)=¡4.
Solution. The characteristic polynomial p(D)=D3¡ 4D2+4D=D(D¡ 2)2 has roots 0; 2; 2.
By Theorem 72, the general solution is y(x)=C1+(C2+C3x)e

2x.
From this formula for y(x), we compute y 0(x) = (2C2+C3+ 2C3x)e

2x and y 00(x) = 4(C2+C3+C3x)e
2x.

The initial conditions therefore result in the equations C1+C2=4, 2C2+C3=0, 4C2+4C3=¡4.
Solving these (start with the last two equations) we find C1=3, C2=1, C3=¡2.
Hence the unique solution to the IVP is y(x)= 3+ (1¡ 2x)e2x.
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Notes for Lecture 18 Mon, 10/7/2024

Review. A homogeneous linear DE with constant coefficients is of the form p(D)y = 0, where
p(D) is the characteristic polynomial polynomial. For each characteristic root r of multiplicity k,
we get the k solutions xjerx for j=0; 1; :::; k¡ 1.

Example 75. (review) Find the general solution of y 000+2y 00+ y 0=0.
Solution. The characteristic polynomial p(D)=D(D+1)2 has roots 0; 1; 1.
Hence, the general solution is A+(B+Cx)ex.

Example 76. Determine the general solution of y 000¡ 3y 00+3y 0¡ y=0.
Solution. The characteristic polynomial p(D)=D3¡ 3D2+3D¡ 1= (D¡ 1)3 has roots 1; 1; 1.
By Theorem 72, the general solution is y(x)= (C1+C2x+C3x

2)ex.
Comment. The coefficients 1; 2; 1 and 1; 3; 3; 1 in (D+1)2 and (D+1)3 are known as binomial coefficients.
They can be arranged as rows in Pascal's triangle where the next row would be 1; 4; 6; 4; 1.

Example 77. Determine the general solution of y 000¡ y 00¡ 5y 0¡ 3y=0.
Solution. The characteristic polynomial p(D)=D3¡D2¡ 5D¡ 3= (D¡ 3)(D+1)2 has roots 3;¡1;¡1.
Hence, the general solution is y(x)=C1e

3x+(C2+C3x)e
¡x.

Example 78. (homework) Solve the IVP y 000=8y 00¡ 16y 0 with y(0)=1, y 0(0)=4, y 00(0)=0.
Solution. The characteristic polynomial p(D)=D3¡ 8D2+ 16D=D(D¡ 4)2 has roots 0; 4; 4.
By Theorem 72, the general solution is y(x)=C1+(C2+C3x)e

4x.
Using y0(x)= (4C2+C3+4C3x)e

4x and y 00(x)=4(4C2+2C3+4C3x)e4x, the initial conditions result in the
equations C1+C2=1, 4C2+C3=4, 16C2+8C3=0.
Solving these (start with the last two equations) we find C1=¡1, C2=2, C3=¡4.
Hence the unique solution to the IVP is y(x)=¡1+ (2¡ 4x)e4x.
Important comment. Check that y(x) indeed solves the IVP.

Example 79. Determine the general solution of y(6)=3y(5)¡ 4y 000.
Solution. This DE is of the form p(D) y=0 with p(D)=D6¡ 3D5+4D3=D3(D¡ 2)2(D+1).
The characteristic roots are 2; 2; 0; 0; 0;¡1.
By Theorem 72, the general solution is y(x)= (C1+C2x)e

2x+C3+C4x+C5x
2+C6e

¡x.

Example 80. Consider the function y(x)=3xe¡2x+7ex. Determine a homogeneous linear DE
with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include ¡2;¡2; 1.
The simplest choice for p(D) thus is p(D)= (D+2)2(D¡ 1)=D3+3D2¡ 4.
Accordingly, y(x) is a solution of y 000+3y 00¡ 4y=0.

Example 81. Consider the function y(x) = 3xe¡2x + 7. Determine a homogeneous linear DE
with constant coefficients of which y(x) is a solution.

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include ¡2;¡2; 0.
The simplest choice for p(D) thus is p(D)= (D+2)2D=D3+4D2+4D.
Accordingly, y(x) is a solution of y 000+4y 00+4y0=0.
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Real form of complex solutions

Let's recall some basic facts about complex numbers:

� Every complex number can be written as z=x+ iy with real x; y.

� Here, the imaginary unit i is characterized by solving x2=¡1.
Important observation. The same equation is solved by ¡i. This means that, algebraically, we cannot
distinguish between +i and ¡i.

� The conjugate of z=x+ iy is z�=x¡ iy.
Important comment. Since we cannot algebraically distinguish between �i, we also cannot distinguish
between z and z�. That's the reason why, in problems involving only real numbers, if a complex number
z=x+ iy shows up, then its conjugate z�=x¡ iy has to show up in the same manner. With that in
mind, have another look at the examples below.

� The real part of z=x+ iy is x and we write Re(z)=x.

Likewise the imaginary part is Im(z)= y.

Observe that Re(z)= 1

2
(z+ z�) as well as Im(z)= 1

2i
(z¡ z�).

Theorem 82. (Euler's identity) eix= cos(x)+ i sin(x)

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the five
fundamental constants).

Comment. It follows that cos(x)=Re(eix)= 1

2
(eix+ e¡ix) and sin(x)= Im(eix)= 1

2i
(eix¡ e¡ix).

Example 83. Determine the general solution of y 00+ y=0.
Solution. (complex numbers in general solution) The characteristic polynomial is D2+1 which has no roots
over the reals. Over the complex numbers, by definition, the roots are i and ¡i.
So the general solution is y(x)=C1 e

ix+C2 e
¡ix.

Solution. (real general solution) On the other hand, we easily check that y1= cos(x) and y2= sin(x) are two
solutions. Hence, the general solution can also be written as y(x)=D1 cos(x)+D2 sin(x).

Important comment. That we have these two different representations is a consequence of Euler's identity
(Theorem 82) by which e�ix= cos(x)� i sin(x).
On the other hand, cos(x)= 1

2
(eix+ e¡ix) and sin(x)= 1

2i
(eix¡ e¡ix).

[Recall that the first formula is an instance of Re(z)= 1

2
(z+ z�) and the second of Im(z)= 1

2i
(z¡ z�).]

Example 84. Determine the general solution of y 00¡ 4y 0+ 13y=0 using only real numbers.
Solution. The characteristic polynomial p(D)=D2¡ 4D+ 13 has roots 2+3i; 2¡ 3i.

[We can use the quadratic formula to find these roots as 4� 42¡ 4 � 13
p

2
=
4� ¡36

p

2
=
4� 6i
2

=2� 3i.]

Hence, the general solution in real form is y(x)=C1e
2xcos(3x)+C2e

2xsin(3x).

Note. e(2�3i)x= e2xe�3ix= e2x(cos(3x)� i sin(3x))
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Review. A linear DE of order n is of the form

y(n)+Pn¡1(x) y(n¡1)+ :::+P1(x)y 0+P0(x)y= f(x):

The general solution of linear DE always takes the form

y(x)= yp(x)+C1y1(x)+ :::+Cn yn(x);

where yp is any solution (called a particular solution) and y1; y2; :::; yn are solutions to the
corresponding homogeneous linear DE.

� In terms of D=
d

dx
, the DE becomes: Ly= f(x) with L=Dn+Pn¡1(x)D

n¡1+ :::+P1(x)D+P0(x).

� The inclusion of the f(x) term makes Ly = f(x) an inhomogeneous linear DE. The corresponding
homogeneous DE is Ly=0 (note that the zero function y(x)= 0 is a solution of Ly=0).

� L is called a linear differential operator.

� L(C1y1+C1y2)=C1Ly1+C2Ly2 (linearity)
Comment. If you are familiar with linear algebra, think of L replaced with a matrix A and y1; y2
replaced with vectors v1;v2. In that case, the same linearity property holds.

� So, if y1 solves Ly= f(x), and y2 solves Ly= g(x), then C1y1+C2y2 solves C1f(x)+C2 g(x).

� In particular, if y1 and y2 solve the homogeneous DE, then so does any linear combination
C1y1+C2y2. This explains why, for any homogeneous linear DE of order n, there are n solutions
y1; y2; :::; yn such that the general solution is y(x) = C1y1(x) + ::: + Cn yn(x). Moreover,
in that case, if we have a particular solution yp of the inhomogeneous DE Ly = f(x), then
yp+C1y1+ :::+Cn yn is the general solution of Ly= f(x).

Example 85. (preview) Determine the general solution of y 00+4y= 12x. Hint : 3x is a solution.

Solution. Here, p(D)=D2+4. Because of the hint, we know that a particular solution is yp=3x.
The homogeneous DE p(D)y=0 has solutions y1= cos(2x) and y2= sin(2x). [Make sure this is clear!]

Therefore, the general solution to the original DE is yp+C1 y1+C2y2=3x+C1cos(2x)+C2sin(2x).

Just to make sure. The DE in operator notation is Ly= f(x) with L=D2+4 and f(x)= 12x.
Next. How to find the particular solution yp=3x ourselves.
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Notes for Lecture 19 Wed, 10/9/2024

Example 86. (review) Find the general solution of y(7)+8y(6)+42y(5)+104y(4)+169y 000=0.
Use the fact that ¡2+3i is a repeated characteristic root.

Solution. The characteristic polynomial p(D)=D3(D2+4D+ 13)2 has roots 0; 0; 0;¡2� 3i;¡2� 3i.
[Since ¡2+3i is a root so must be ¡2¡ 3i. Repeating them once, together with 0; 0; 0 results in 7 roots.]

Hence, the general solution is (A+Bx+Cx2)+ (D+Ex) e¡2xcos(3x)+ (F +Gx)e¡2xsin(3x).

Example 87. (review) Consider the function y(x)= 7x¡ 5x2e4x. Find an operator p(D) such
that p(D)y=0.
Comment. This is the same as determining a homogeneous linear DE with constant coefficients solved by y(x).

Solution. In order for y(x) to be a solution of p(D)y=0, the characteristic roots must include 0; 0; 4; 4; 4.

The simplest choice for p(D) thus is p(D)=D2(D¡ 4)3.

Inhomogeneous linear DEs: The method of undetermined coefficients

The method of undetermined coefficients allows us to solve certain inhomogeneous linear DEs
Ly= f(x) with constant coefficients..
It works if f(x) is itself a solution of a homogeneous linear DE with constant coefficients (see previous example).

Example 88. Determine the general solution of y 00+4y= 12x.
Solution. The DE is p(D)y = 12x with p(D) = D2 + 4, which has roots �2i. Thus, the general solution is
y(x)= yp(x)+C1cos(2x)+C2sin(2x). It remains to find a particular solution yp.

Since D2 � (12x)= 0, we apply D2 to both sides of the DE to get the homogeneous DE D2(D2+4) � y=0.
Its general solution is C1+C2x+C3cos(2x)+C4sin(2x) and yp must be of this form. Indeed, there must be a
particular solution of the simpler form yp=C1+C2x (because C3cos(2x)+C4sin(2x) can be added to any yp).
It remains to find appropriate values C1;C2 such that yp

00+4yp=12x. Since yp00+4yp=4C1+4C2x, comparing
coefficients yields 4C1=0 and 4C2= 12, so that C1=0 and C2=3. In other words, yp=3x.

Therefore, the general solution to the original DE is y(x)= 3x+C1cos(2x)+C2sin(2x).

Example 89. Determine the general solution of y 00+4y 0+4y= e3x.
Solution. The DE is p(D)y= e3x with p(D) =D2+4D+4= (D+2)2, which has roots ¡2;¡2. Thus, the
general solution is y(x)= yp(x)+ (C1+C2x)e

¡2x. It remains to find a particular solution yp.

Since (D¡ 3)e3x=0, we apply (D¡ 3) to the DE to get the homogeneous DE (D¡ 3)(D+2)2y=0.

Its general solution is (C1+C2x)e
¡2x+C3e

3x and yp must be of this form. Indeed, there must be a particular
solution of the simpler form yp=Ae3x.

To determine the value of C, we plug into the original DE: yp
00+4yp

0 +4yp=(9+4 � 3+4)Ae3x=
!
e3x. Hence,

A=1/25. Therefore, the general solution to the original DE is y(x)= (C1+C2x)e
¡2x+

1

25
e3x.

Solution. (same, just shortened) In schematic form:

homogeneous DE inhomogeneous part
characteristic roots ¡2;¡2 3

solutions e¡2x; xe¡2x e3x

This tells us that there exists a particular solution of the form yp=Ae3x. Then the general solution is

y= yp+C1e
¡2x+C2xe

¡2x:

So far, we didn't need to do any calculations (besides determining the roots)! However, we still need to determine
the value of A (by plugging into the DE as above), namely A= 1

25
. For this reason, this approach is often called

the method of undetermined coefficients.
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We found the following recipe for solving nonhomogeneous linear DEs with constant coefficients:
That approach works for p(D)y= f(x) whenever the right-hand side f(x) is the solution of some homogeneous
linear DE with constant coefficients: q(D)f(x)= 0

(method of undetermined coefficients) To find a particular solution yp to an inhomogeneous
linear DE with constant coefficients p(D)y= f(x):

� Determine the characteristic roots of the homogeneous DE and corresponding solutions.

� Find the roots of q(D) so that q(D)f(x)= 0. [This does not work for all f(x).]

Let yp;1; yp;2; ::: be the additional solutions (when the roots are added to those of the
homogeneous DE).

Then there exists (unique) Ci so that

yp=C1yp;1+C2yp;2+ :::

To find the values Ci, we need to plug yp into the original DE.

Why? To see that this approach works, note that applying q(D) to both sides of the inhomogeneous DE
p(D)y = f(x) results in q(D)p(D)y = 0 which is homogeneous. We already know that the solutions to the
homogeneous DE can be added to any particular solution yp. Therefore, we can focus only on the additional
solutions coming from the roots of q(D).

For which f(x) does this work? By Theorem 72, we know exactly which f(x) are solutions to homoge-
neous linear DEs with constant coefficients: these are linear combinations of exponentials xjerx (which includes
xj eaxcos(bx) and xj eaxsin(bx)).

Example 90. Determine the general solution of y 00+4y 0+4y=7e¡2x.
Solution. The homogeneous DE is y 00 + 4y 0 + 4y = 0 (note that D2 + 4D + 4 = (D + 2)2) and the
inhomogeneous part is 7e¡2x.

homogeneous DE inhomogeneous part
characteristic roots ¡2;¡2 ¡2

solutions e¡2x; xe¡2x x2e¡2x

This tells us that there exists a particular solution of the form yp=Cx2 e¡2x. To find the value of C, we plug
into the DE.
yp
0 =C(¡2x2+2x)e¡2x

yp
00=C(4x2¡ 8x+2)e¡2x

yp
00+4yp

0 +4yp=2Ce¡2x=
!
7e¡2x

It follows that C =
7

2
, so that yp=

7

2
x2e¡2x. Hence the general solution is

y(x)=

�
C1+C2x+

7
2
x2
�
e¡2x:
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Notes for Lecture 20 Mon, 10/14/2024

Example 91. Consider the DE y 00+4y 0+4y=2e3x¡ 5e¡2x.

(a) What is the simplest form (with undetermined coefficients) of a particular solution?

(b) Determine a particular solution using our results from Examples 89 and 90.

(c) Determine the general solution.

Solution.

(a) Note that D2+4D+4= (D+2)2.

homogeneous DE inhomogeneous part
characteristic roots ¡2;¡2 3;¡2

solutions e¡2x; xe¡2x e3x; x2e¡2x

Hence, there has to be a particular solution of the form yp=Ae3x+Bx2e¡2x.
To find the (unique) values of A and B, we can plug into the DE. Alternatively, we can break the problem
into two pieces as illustrated in the next part.

(b) Write the DE as Ly=2e3x¡ 5e¡2x where L=D2+4D+4. In Example 89 we found that y1=
1

25 e
3x

satisfies Ly1= e3x. Also, in Example 90 we found that y2=
7

2
x2e¡2x satisfies Ly2=7e¡2x.

By linearity, it follows that L(Ay1+By2)=ALy1+BLy2=Ae3x+7Be¡2x.
To get a particular solution yp of our DE, we need A=2 and 7B=¡5.

Hence, yp=2y1¡ 5

7
y2=

2

25
e3x¡ 5

2
x2e¡2x.

Comment. Of course, if we hadn't previously solved Examples 89 and 90, we could have plugged the result
from the first part into the DE to determine the coefficients A and B. On the other hand, breaking the
inhomogeneous part (2e3x¡ 5e¡2x) up into pieces (here, e3x and e¡2x) can help keep things organized,
especially when working by hand.

(c) The general solution is 2

25
e3x¡ 5

2
x2e¡2x+(C1+C2x)e

2x.

Example 92. Consider the DE y 00¡ 2y 0+ y=5sin(3x).

(a) What is the simplest form (with undetermined coefficients) of a particular solution?

(b) Determine a particular solution.

(c) Determine the general solution.

Solution. Note that D2¡ 2D+1= (D¡ 1)2.
homogeneous DE inhomogeneous part

characteristic roots 1; 1 �3i
solutions ex; xex cos(3x); sin(3x)

(a) This tells us that there exists a particular solution of the form yp=A cos(3x)+B sin(3x).

(b) To find the values of A and B, we plug into the DE.

yp
0 =¡3A sin(3x)+ 3B cos(3x)

yp
00=¡9A cos(3x)¡ 9B sin(3x)

yp
00¡ 2yp0 + yp=(¡8A¡ 6B)cos(3x)+ (6A¡ 8B)sin(3x)=

!
5sin(3x)

Equating the coefficients of cos(x), sin(x), we obtain the two equations¡8A¡6B=0 and 6A¡8B=5.

Solving these, we find A= 3

10
, B=¡2

5
. Accordingly, a particular solution is yp=

3

10
cos(3x)¡ 2

5
sin(3x).

(c) The general solution is y(x)= 3

10
cos(3x)¡ 2

5
sin(3x)+ (C1+C2x)e

x.
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Example 93. Consider the DE y 00¡ 2y 0+ y = 5e2xsin(3x) + 7xex. What is the simplest form
(with undetermined coefficients) of a particular solution?

Solution. SinceD2¡2D+1=(D¡1)2, the characteristic roots are 1;1. The roots for the inhomogeneous part
are 2� 3i; 1; 1. Hence, there has to be a particular solution of the form yp=Ae2xcos(3x) +Be2xsin(3x) +
Cx2ex+Dx3ex.
(We can then plug into the DE to determine the (unique) values of the coefficients A;B;C;D.)

Example 94. (homework)What is the shape of a particular solution of y 00+4y 0+4y=xcos(x)?
Solution. The characteristic roots are ¡2;¡2. The roots for the inhomogeneous part are �i;�i. Hence, there
has to be a particular solution of the form yp=(C1+C2x)cos(x)+ (C3+C4x)sin(x).

Continuing to find a particular solution. To find the value of the Cj's, we plug into the DE.
yp
0 =(C2+C3+C4x)cos(x)+ (C4¡C1¡C2x)sin(x)
yp
00=(2C4¡C1¡C2x)cos(x)+ (¡2C2¡C3¡C4x)sin(x)
yp
00+4yp

0 +4yp=(3C1+4C2+4C3+2C4+(3C2+4C4)x)cos(x)

+ (¡4C1¡ 2C2+3C3+4C4+(¡4C2+3C4)x)sin(x)=
!
x cos(x).

Equating the coefficients of cos(x), xcos(x), sin(x), xsin(x), we get the equations 3C1+4C2+4C3+2C4=0,
3C2+4C4=1, ¡4C1¡ 2C2+3C3+4C4=0, ¡4C2+3C4=0.

Solving (this is tedious!), we find C1=¡ 4

125
, C2=

3

25
, C3=¡ 22

125
, C4=

4

25
.

Hence, yp=
�
¡ 4

125
+

3

25
x
�
cos(x)+

�
¡ 22

125
+

4

25
x
�
sin(x).

Example 95. (homework) What is the shape of a particular solution of y 00 + 4y 0 + 4y =
4e3xsin(2x)¡x sin(x).
Solution. The characteristic roots are ¡2;¡2. The roots for the inhomogeneous part roots are 3� 2i;�i;�i.
Hence, there has to be a particular solution of the form
yp=C1e

3xcos(2x)+C2e
3xsin(2x)+ (C3+C4x)cos(x)+ (C5+C6x)sin(x).

Continuing to find a particular solution. To find the values of C1; :::; C6, we plug into the DE. But this final
step is so boring that we don't go through it here. Computers (currently?) cannot afford to be as selective; mine
obediently calculated: yp=¡

4

841e
3x(20cos(2x)¡ 21sin(2x))+ 1

125 ((¡22+ 20x)cos(x)+ (4¡ 15x)sin(x))
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Notes for Lecture 21 Wed, 10/16/2024

A closer look at second-order linear DEs

Application: motion of a mass on a spring

Example 96. The motion of a mass m attached to a spring is described by

my 00+ ky=0

where y is the displacement from the equilibrium position and k > 0 is the spring constant.
Why? This follows from Hooke's law F =¡ky combined with Newton's second law F =ma=my 00. (Note
that the minus sign is needed because the force on the mass is in direction opposite to the displacement.)
Comment. By measuring y as the displacement from equilibrium, it doesn't matter whether the mass is attached
horizontally or vertically (gravity is taken into account by the extra stretch in the spring due to the mass).

Solving this DE, we find that the general solution is

y(t)=A cos(!t)+B sin(!t)

where != k/m
p

(note that the characteristic roots are �i k

m

q
). We observe that:

� The motion y(t) is periodic with period 2�/!.
This follows from the fact that both cos(t) and sin(t) have period 2�.

� The amplitude of the motion y(t) is A2+B2
p

.

This follows from the fact that y(t)=Acos(!t)+B sin(!t)= r cos(!t¡�) where (r;�) are the polar
coordinates for (A;B). In particular, the amplitude is r= A2+B2

p
. More below!

(period and amplitude of oscillations) The oscillations A cos(!t) + B sin(!t) are periodic

with period 2�/! and amplitude r= A2+B2
p

.

More precisely, if (r; �) are the polar coordinates for (A;B), then

A cos(!t)+B sin(!t)= r cos(!t¡�):

! is the (circular) frequency and � is called the phase angle.

Why? First, observe that both sides of A cos(!t)+B sin(!t)= r cos(!t¡�) solve the same DE

y00+!y=0:

The LHS has initial values y(0) = A and y 0(0) = !B, the RHS has y(0) = r cos(�) and y 0(0) = r!sin(�).
Hence, the two are equal if A= r cos(�) and B= r sin(�).

Alternatively. If you like trig identities, this follows from:
A cos(!t)+B sin(!t)= r(cos(�)cos(!t)+ sin(�)sin(!t))= r cos(!t¡�).
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Review. How to calculate the polar coordinates (r; �) for (A;B)?
We need to find r> 0 and �2 [0; 2�) such that (A;B)= r(cos�; sin�).

Hence, r= A2+B2
p

and � is determined by cos(�)= A

r
and sin(�)= B

r
.

In particular, tan(�)= B

A
and, if careful, we can compute � using tan¡1 as

�= tan¡1
�
B

A

�
+

�
0; if A> 0;
�; if A< 0:

Comment. Recall that tan¡1 gives angles between¡�

2
and �

2
(this corresponds to the first and fourth quadrants

where A> 0).
Comment. If we want positive angles, we can always add 2� to negative angles.
Comment. In most programming languages, we can use the function atan2(B;A) to compute the corresponding
angle � (between ¡� and �).

Example 97. What are the period, the amplitude and the phase angle of the oscillations cos(4t)¡
3 sin(4t)?
Solution. The period is 2�

4
=
�

2
.

The amplitude is 12+(¡3)2
q

= 10
p

.

To write cos(4t) ¡ 3 sin(4t) = r cos(4t ¡ �), we need to compute the polar coordinates (r; �) of the point
(1;¡3). We already computed r= 10

p
. The phase angle is �=atan2(¡3;1)=tan¡1(¡3)�¡1.249�¡71.6�.

Comment. If we prefer positive angles, we can choose �= tan¡1(¡3)+2�� 5.034� 288.4� instead.

Example 98. What are the period, the amplitude and the phase angle of the oscillations¡cos(4t)+
3 sin(4t)?

Solution. Again, the period is 2�
4
=
�

2
and the amplitude is still (¡1)2+32

q
= 10
p

.

This time, to write ¡cos(4t) + 3 sin(4t) = r cos(4t¡ �), we need to compute the polar coordinates (r; �) of
the point (¡1; 3). We already computed r= 10

p
. The phase angle is �= atan2(3;¡1) = tan¡1(¡3) + ��

1.893� 108.4�.
Comment. Of course, this example is the same as the previous times¡1. In particular, make a sketch to compare
the polar coordinates of (1;¡3) and (¡1; 3), and to make sure you see why they differ by exactly 180�.

Example 99. The motion of a mass on a spring is described by 5y 00+2y=0, y(0)=3, y 0(0)=¡1.
What is the period and the amplitude of the resulting oscillations?

Solution. The characteristic roots are �i! with != 2

5

q
. The general solution is y(t)=Acos(!t)+B sin(!t).

The period of the oscillations therefore is 2�
!
=2�

5

2

q
=� 10
p

.

To meet the initial conditions, we need y(0)=A=
!
3 and y 0(0)=!B=

!
¡1. The latter implies B=¡ 1

!
=¡ 5

2

q
.

Hence, the amplitude of the oscillations is A2+B2
p

= 32+
5

2

q
=

23
2

q
.
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Notes for Lecture 22 Fri, 10/18/2024

The qualitative effects of damping

The motion of a mass on a spring (or the approximate motion of a pendulum), with damping
taken into account, can be modeled by the DE

y 00+ dy 0+ cy=0

with c>0 and d> 0. The term dy 0 models damping (e.g. friction, air resistance) proportional to
the velocity y 0.

The characteristic equation r2+ dr+ c=0 has roots 1

2

�
¡d� d2¡ 4c

p �
.

The nature of the solutions depends on whether the discriminant�=d2¡4c is positive, negative,
or zero.

Undamped. d=0. In that case, �< 0. We get two complex roots �i! with != c
p

.

Solutions: A cos(!t)+B sin(!t)= r cos(!t¡�) where (A;B)= r(cos�; sin�)
These are oscillations with frequency ! and amplitude r.

Underdamped. d> 0, �< 0. We get two complex roots ¡�� i! with ¡�=¡d/2< 0.
Solutions: e¡�t[A cos(!t)+B sin(!t)]= e¡�t[r cos(!t¡�)] (! 0 as t!1)
These are oscillations with amplitude going to zero.

Critically damped. d> 0, �=0. We get one (double) real root ¡�< 0.
Solutions: (A+Bt) e¡�t (! 0 as t!1)
There are no oscillations. (Can you see why we cross the t-axis at most once?)

Overdamped. d> 0, �> 0. We get two real roots ¡�1;¡�2< 0. [negative because c; d > 0]

Solutions: Ae¡�1t+Be¡�2t (! 0 as t!1)
There are no oscillations. (Again, there is at most one crossing of the t-axis.)

Example 100. The motion of a mass on a spring is described by 5y 00+dy 0+2y=0 with d> 0.
For which value of d is the motion critically damped? Underdamped? Overdamped?

Solution. The characteristic roots are 1

2

�
¡d � d2¡ 40

p �
. The motion is critically damped if d2 ¡ 40= 0.

Equivalently, the motion is critically damped d= 40
p

.

Consequently, the motion is underdamped if d< 40
p

(then we get complex roots and the solutions will involve
oscillations), and it is overdamped if d> 40

p
(the roots are real and the solutions will not involve oscillations).
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Notes for Lecture 23 Mon, 10/21/2024

Review. Underdamped, overdamped, critically damped for the DE y 00+ dy 0+ cy=0.
The critically damped case is when the damping is just large enough to avoid oscillations (under-
damped case). If damping is increased further (overdamped case), then this typically means that
it �takes longer� for the solution to approach equilibrium.
Challenge. Try to make this last comment more precise! For that, focus on the exponential term in the
corresponding general solution that decays the slowest. That slowest term decays fastest in the critically damped
case.

The same DE describes the current in an RLC circuit (disconnected from its source).

Example 101. The motion of a mass on a spring is described by my 00+3y 0+2y=0. For which
value of m is the motion critically damped? Underdamped? Overdamped?

Solution. The characteristic roots are 1

2
(¡3 � 9¡ 8m

p
). The motion is critically damped if 9 ¡ 8m = 0.

Equivalently, the motion is critically damped m=
9

8
.

Consequently, the motion is underdamped if m>
9

8
(then we get complex roots and the solutions will involve

oscillations), and it is overdamped if m<
9

8
(the roots are real and the solutions will not involve oscillations).

Application: motion of a pendulum

Example 102. Show that the motion of an ideal pendulum is described by

L� 00+ g sin(�)= 0;

where � is the angular displacement and L is the length of the pendulum.

And, as usual, g is acceleration due to gravity.

For short times and small angles, this motion is approximately described by

L� 00+ g�=0:

This is because, if � is small, then sin(�) � �. For instance, for � = 15� the error
�¡ sin� is about 1%.

Θ

s

L

h

Solution. (Newton's second law) The tangential component of the gravitational force is F = ¡sin� � mg.
Combining this with Newton's second law, according to which F =ma=mL�00 (note that a=s00 where s=L�),
we obtain the claimed DE.

Solution. (conservation of energy) Alternatively, we can use conservation of energy to derive the DE. Again,
we assume the string to be massless, and let m be the swinging mass. Let s and h be as in the sketch above.

The velocity (more accurately, the speed) of the mass is v= ds

dt
=L

d�

dt
.

Its kinetic energy therefore is T = 1

2
mv2=

1

2
mL2

�
d�

dt

�
2
.

On the other hand, the potential energy is V =mgh=mgL(1¡ cos�) (weight mg times height h).
By the principle of conservation of energy, the sum of these is constant: T +V = const

Taking the time derivative, this becomes 1
2
mL22

d�

dt

d2�

dt2
+mgLsin� d�

dt
=0. Cancelling terms, we obtain the DE.
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Example 103. The motion of a pendulum is described by � 00+ 9� = 0, �(0) = 1/4, � 0(0) = 0.
What is the period and the amplitude of the resulting oscillations?

Solution. The roots of the characteristic polynomial are �3i.
Hence, �(t)=A cos(3t)+B sin(3t). �(0)=A=1/4. �0(0)=3B=0.
Therefore, the solution is �(t)= 1/4 cos(3t).
Hence, the period is 2�/3 and the amplitude is 1/4.

Comment. The initial angle 1/4 is about 14.3�.
Π

6

Π

3

Π

2

2 Π

3

5 Π

6

Π

-

1

2

1

2

Example 104. The motion of a pendulum is described by � 00+9�=0, �(0)= 1/4, � 0(0)=¡3

2
(�initial kick�). What is the period and the amplitude of the resulting oscillations?

Solution. This time, �(0)=A=1/4. �0(0)= 3B=¡3/2.

Therefore, the solution is �(t)= 1

4
cos(3t)¡ 1

2
sin(3t).

Hence, the period is 2� / 3 and the amplitude is 1

42
+

1

22

q
=

5
p

4
�

0.559.

Comment. Using polar coordinates, we get �(t)= 5
p

4
cos(3t¡�) with

phase angle �= tan¡1(¡2)+ 2�� 5.176.

Π

6

Π

3

Π

2

2 Π

3

5 Π

6

Π

-

1

2

1

2
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Notes for Lecture 24 Wed, 10/23/2024

Adding external forces and the phenomenon of resonance

The motion of a mass m on a spring, with damping and with an external force f(t) taken into
account, can be modeled by the DE

my 00+ dy 0+ ky= f(t):

Note that each term is representing a force: my 00=ma is the force due to Newton's second law (F =ma), the
term dy 0 models damping (proportional to the velocity), the term ky represents the force due to Hooke's law,
and the term f(t) represents an external force that acts on the mass at time t.

Example 105. Describe the solutions of y 00+4y= cos(�t). (Here, �> 0 is a constant.)

Solution. The characteristic roots of the homogeneous DE are �2i so that 2 is the natural frequency (the
frequency at which the system would oscillate in the absence of external forces; mathematically, this reflects
the fact that the general solution to the corresponding homogeneous DE is A cos(2t) + B sin(2t), which has
frequency !=2).
The characteristic roots of the inhomogeneous part are ��i where � is the external frequency.

Case 1: �=/ 2. Then there is a particular solution of the form yp=A cos(�t) +B sin(�t). To determine
the unique values of A;B, we plug into the DE:

yp
00+4yp=(4¡�2)A cos(�t)+ (4¡�2)B sin(�t)=

!
cos(�t)

We conclude that (4¡�2)A=1 and (4¡�2)B=0. Solving these, we find A=1/(4¡�2) and B=0.

Thus, the general solution is of the form y=
1

4¡�2
cos(�t)+C1cos(2t)+C2sin(2t).

Case 2: �=2. Now, there is a particular solution of the form yp=At cos(2t)+Bt sin(2t). To determine
the unique values of A;B, we again plug into the DE (which is more work this time):

yp
00+4yp =

work
4B cos(2t)¡ 4A sin(2t)=

!
cos(2t)

We conclude that 4B=1 and ¡4A=0. Solving these, we find A=0 and B=1/4.

Thus, the general solution is of the form y=
1

4
t sin(2t)+C1cos(2t)+C2sin(2t).

Note that the amplitude in yp increases without bound (so that the same is true for the general solution).
This phenomenon is called resonance; it occurs if an external frequency matches a natural frequency.

If an external frequency matches a natural frequency, then resonance occurs.

In that case, we obtain amplitudes that grow without bound.

Resonance (or anything close to it) is very important for practical purposes because large amplitudes can be very
destructive: singing to shatter glass, earth quake waves and buildings, marching soldiers on bridges, :::

Comment. Mathematically speaking, resonance occurs if the characteristic roots of the homogeneous DE and the
inhomogeneous part overlap. In that case, the solutions acquire a factor of the variable t (or x) which changes
the nature of the solutions (and results in unbounded amplitudes).

Example 106. Consider y 00+9y= 10 cos(2�t). For what value of � does resonance occur?

Solution. The natural frequency is 3. The external frequency is 2�. Hence, resonance occurs when �= 3

2
.
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Example 107. The motion of a mass on a spring under an external force is described by 5y 00+
2y=¡2sin(3�t). For which value of � does resonance occur?

Solution. The natural frequency is 2

5

q
. The external frequency is 3�. Hence, resonance occurs when �= 1

3

2

5

q
.

Example 108. The motion of a mass on a spring under an external force is described by 3y 00+
ky= cos(t/2). For which value of k > 0 does resonance occur?

Solution. The natural frequency is k

3

q
. The external frequency is 1

2
. Hence, resonance occurs when k

3

q
=
1

2
.

This happens if k=3 �
�
1

2

�
2
=
3

4
.
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Notes for Lecture 25 Fri, 10/25/2024

Example 109. The motion of a mass on a spring under an external force is described by my 00+
4y=3cos(t)¡ cos(2t)+ 7cos(3t). For which values of m> 0 does resonance occur?

Solution. The characteristic roots of the homogeneous DE are�i 4

m

q
so that the natural frequency is 4

m

q
. The

external frequencies are �=1; 2; 3. Hence, resonance occurs when 4

m

q
=� for �2f1; 2; 3g. This is equivalent

to m=
4

�2
so that this happens if m=4, m=1, m=

4

9
.

Comment. The external force 3cos(t)¡ cos(2t) + 7cos(3t) may look artifical. However, that is not the case!
Indeed, essentially any 2�-periodic function can be written as an (infinite) combination of such cosine and sine
terms. The resulting series are known as Fourier series.

External forces plus damping

In the presence of both damping (d> 0) and a periodic external force (f(t)), the motion y(t) of
a mass on a spring is described by the DE

my 00+ dy 0+ ky= f(t):

Solving the DE, we find that y(t) splits into transient motion ytr (with ytr(t)! 0 as t!1)
and steady periodic oscillations ysp:

y(t)= ytr+ ysp:

The following example spells this out.
Comment. Note that ysp will correspond to the simplest particular solution, while ytr corresponds to the solution
of the corresponding homogeneous system (where we have no external force).

Example 110. A forced mechanical oscillator is described by 2y 00+2y 0+ y=10sin(t). As t!1,
what are the period and the amplitude of the resulting steady periodic oscillations?

Solution. The characteristic roots of the homogeneous DE are 1

4
(¡2� 4¡ 8

p
) =¡1

2
� 1

2
i. Accordingly, the

system without external force is underdamped (because of the �i/2 the solutions will involve oscillations).
The characteristic roots for the inhomogeneous part are �i so that there must be a particular solution yp =
A cos(t) +B sin(t) with coefficients A; B that we need to determine by plugging into the DE. This results in
A=¡4 and B=¡2 (do it!).

Hence, the general solution is y(t)=¡4cos(t)¡ 2sin(t)
ysp

+ e¡t/2
�
C1cos

�
t

2

�
+C2sin

�
t

2

��
ytr! 0 as t!1

.

The period of ysp=¡4cos(t)¡ 2sin(t) is 2� and the amplitude is (¡4)2+(¡2)2
q

= 20
p

.

Comment. Using the polar coordinates (¡4;¡2)= 20
p

(cos�; sin�) where �= tan¡1(1/2)+�� 3.605, we
can alternatively express the steady periodic oscillations as ysp=¡4cos(t)¡ 2sin(t)= 20

p
(cos(t¡�)).
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Example 111. A forced mechanical oscillator is described by y 00+ 5y 0+ 6y = 2 cos(3t). What
are the (circular) frequency and the amplitude of the resulting steady periodic oscillations?

Solution. The characteristic roots of the homogeneous DE are ¡2;¡3. Accordingly, the system without external
force is overdamped (the solutions will not involve oscillations).
The characteristic roots for the inhomogeneous part are �3i so that there must be a particular solution yp =
A cos(3t)+B sin(3t) with coefficients A;B that we need to determine by plugging into the DE. To do so, we
compute yp

0 =¡3A sin(3t)+ 3B cos(3t) as well as yp00=¡9A cos(3t)¡ 9B sin(3t).

yp
00+5yp

0 +6yp = (¡9A cos(3t)¡ 9B sin(3t))+ 5(¡3A sin(3t)+ 3B cos(3t))+ 6(A cos(3t)+B sin(3t))
= (¡9A+ 15B+6A)cos(3t)+ (¡9B ¡ 15A+6B)sin(3t)

=
!
2 cos(3t)

This results in the two equations ¡ 3A+ 15B =2 and ¡3B ¡ 15A=0, which we solve to find A=¡ 1

39 and
B=

5

39
.

The general solution is y(t)=¡ 1

39
cos(3t)+ 5

39
sin(3t)

ysp

+C1e
¡2t+C2e

¡3t

ytr! 0 as t!1
.

The frequency of ysp=¡
1

39cos(3t)+
5

39 sin(3t) is 3 and the amplitude is
�
¡ 1

39

�
2
+
�
5

39

�
2

r
=

2

117

q
.

Example 112. Find the steady periodic solution to y 00 + 2y 0 + 5y = cos(�t). What is the
amplitude of the steady periodic oscillations? For which � is the amplitude maximal?

Solution. The characteristic roots of the homogeneous DE are ¡1�2i.
[Not really needed, because positive damping prevents duplication; can you see it?]

Hence, ysp=A cos(�t) +B sin(�t) and to find A;B we need to plug
into the DE.

Doing so, we find A= 5¡�2

(5¡�2)2+4�2
, B=

2�

(5¡�2)2+4�2
.

Thus, the amplitude of ysp is r(�)= A2+B2
p

=
1

(5¡�2)2+4�2
p .

The function r(�) is sketched to the right. It has a maximum at � =
3

p
at which the amplitude is unusually large (well, here it is not very

pronounced). We say that practical resonance occurs for �= 3
p

.

[For comparison, without damping, (pure) resonance occurs for �= 5
p

.]

0 1 3 3 4 5 6

1

10

1

5
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Example 113. (extra) A car is going at constant speed v on a washboard road surface (�bumpy

road�) with height profile y(s)= a cos
�
2�s

L

�
. Assume that the car oscillates vertically as if on a

spring (no dashpot). Describe the resulting oscillations.

Solution. With x as in the sketch, the spring is stretched by x ¡ y. Hence, by
Hooke's and Newton's laws, its motion is described by mx00=¡k(x¡ y).

At constant speed, s= vt and we obtain the DE mx00+ kx= ky= ka cos
�
2�vt

L

�
,

which is inhomogeneous linear with constant coefficients. Let's solve it.

The natural frequency is !0=
k

m

q
.

The external frequency is i 2�v
L

=�i!. != 2�v

L
.

Case 1: !=/ !0. Then a particular solution is xp = b1 cos(!t) + b2 sin(!t) =
A cos(!t¡ �) for unique values of b1; b2 (which we do not compute here).
The general solution is of the form x=xp+C1 cos(!0t)+C2 sin(!0t).

Case 2: !=!0. Then a particular solution is xp= t[b1 cos(!t)+ b2 sin(!t)]=
At cos(!t¡�) for unique values of b1; b2 (which we do not compute). Note
that the amplitude in xp increases without bound; the same is true for the
general solution x = xp + C1 cos(!0t) + C2 sin(!0t). This phenomenon is
resonance; it occurs if an external frequency matches a natural frequency.

x

y

The first �car� is assumed
to be in equilibrium.
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Notes for Lecture 26 Mon, 10/28/2024

Variation of constants for solving inhomogeneous linear DEs

Review. To find the general solution of an inhomogeneous linear DE Ly= f(x), we only need to find a single
particular solution yp. Then the general solution is yp+ yh, where yh is the general solution of Ly=0.

The method of undetermined coefficients allows us to find a particular solution to an inhomo-
geneous linear DE Ly= f(x) for certain functions f(x).
Moreover, the homogeneous DE needs to have constant coefficients.

The next method, known as variation of constants (or variation of parameters), has no restriction
on the functions f(x) (or the linear DE). The price to pay for this is that the method is usually
more laborious.

Theorem 114. (variation of constants) A particular solution to the inhomogeneous second-
order linear DE Ly= y 00+P1(x)y 0+P0(x)y= f(x) is given by:

yp=C1(x)y1(x)+C2(x)y2(x); C1(x)=¡
Z
y2(x)f(x)
W (x)

dx; C2(x)=
Z
y1(x)f(x)
W (x)

dx;

where y1; y2 are independent solutions of Ly=0 and W = y1y2
0 ¡ y1

0 y2 is their Wronskian.

Comment. We obtain the general solution if we consider all possible constants of integration in the formula for yp.

Proof. Let us look for a particular solution of the form yp=C1(x) y1(x)+C2(x) y2(x).
This �ansatz� is called variation of constants/parameters. We plug into the DE to determine conditions on
C1; C2 so that yp is a solution. The DE will give us one condition and (since there are two unknowns), it is
reasonable to expect that we can impose a second condition (labelled below as �our wish�) to make our life simpler.

We compute yp
0 =C1

0y1+C2
0y2

=0 (our wish)

+C1y1
0 +C2y2

0 and, thus, yp
00= C1

0y1
0 +C2

0y2
0 +C1y1

00+C2y2
00.

[�Our wish� was chosen so that yp
00 would only involve first derivatives of C1 and C2.]

Therefore, plugging into the DE results in

Lyp= C1
0y1
0 +C2

0y2
0 +C1y1

00+C2y2
00+P1(x)(C1y1

0 +C2y2
0)+P0(x)(C1y1+C2y2)

=C1Ly1+C2Ly2=0

=
!

f(x):

We conclude that yp solves the DE if the following two conditions (the first is �our wish�) are satisfied:

C1
0y1+C2

0y2 = 0;

C1
0y1
0 +C2

0y2
0 = f(x):

These are linear equations in C1
0 and C2

0. Solving gives C1
0=

¡y2 f(x)
y1y2

0¡ y1
0 y2

and C2
0=

y1 f(x)

y1y2
0¡ y1

0 y2
, and it only remains

to integrate. �

Comment. In matrix-vector form, the equations are
�
y1 y2
y1
0 y2

0

��
u1
0

u2
0

�
=

�
0

f(x)

�
.

Our solution then follows from multiplying
�
y1 y2
y1
0 y2

0

�¡1
=

1

y1y2
0¡ y1

0 y2

�
y2
0 ¡y2

¡y10 y1

�
with

�
0

f(x)

�
.

Advanced comment. W = y1y2
0 ¡ y1

0 y2 is called the Wronskian of y1 and y2. In general, given a linear
homogeneous DE of order n with solutions y1; :::; yn, the Wronskian of y1; :::; yn is the determinant of the
matrix where each column consists of the derivatives of one of the yi. One useful property of the Wronskian is
that it is nonzero if and only if the y1; :::; yn are linearly independent and therefore generate the general solution.
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Example 115. Determine the general solution of y 00¡ 2y 0+ y= ex

x
.

Solution. This DE is of the form Ly= f(x) with L=D2¡ 2D+1 and f(x)= ex

x
.

Since L=(D¡ 1)2, the homogeneous DE has the two solutions y1= ex, y2= xex.
The corresponding Wronskian is W = y1y2

0 ¡ y1
0 y2= ex(1+x)ex¡ ex(xex)= e2x.

By variation of parameters (Theorem 114), we find that a particular solution is

yp=¡y1
Z
y2f
W

dx+ y2

Z
y1f
W

dx=¡ex
Z
1dx+ xex

Z
1
x
dx= xex(lnjxj ¡ 1):

The general solution therefore is xex(lnjxj ¡ 1)+ (C1+C2x)e
x.

If we prefer, a simplified particular solution is xex lnjxj (because we can add any multiple of xex to yp). Then
the general solution takes the simplified form xex lnjxj+(C1+C2x)e

x.
Comment. Adding constants of integration in the formula for yp, we get ¡ex(x + D1) + xex(lnjxj + D2),
which is the general solution. Any choice of constants suffices to give us a particular solution.
Important comment. Note that we cannot use the method of undetermined coefficients here because the
inhomogeneous term f(x) =

ex

x
is not of the appropriate form. See the next example for a case where both

methods can be applied.

Example 116. (homework) Determine the general solution of y 00+4y 0+4y= e3x.

(a) Using the method of undetermined coefficients.

(b) Using variation of constants.

Solution.

(a) We already did this in Example 89: The characteristic roots are ¡2;¡2. The roots for the inhomogeneous
part are 3. Hence, there has to be a particular solution of the form yp=Ce3x. To find the value of C,
we plug into the DE.

yp
00+4yp

0 +4yp=(9+4 � 3+4)Ce3x=
!
e3x. Hence, C=1/25.

Therefore, the general solution is y(x)= 1

25
e3x+(C1+C2x)e

¡2x.

(b) This DE is of the form Ly= f(x) with L=D2+4D+4 and f(x)= e3x.
Since L=(D+2)2, the homogeneous DE has the two solutions y1= e¡2x, y2=xe¡2x.
The corresponding Wronskian is W = y1y2

0 ¡ y1
0 y2= e¡2x(1¡ 2x)e¡2x¡ (¡2e¡2x)xe¡2x= e¡4x.

By variation of parameters (Theorem 114), we find that a particular solution is

yp = ¡y1
Z
y2f
W

dx+ y2

Z
y1f
W

dx

= ¡e¡2x
Z
xe5xdx

=
1
5
xe5x¡ 1

25e
5x

+ xe¡2x
Z
e5xdx

=
1
5
e5x

=
1
25

e3x:

The general solution therefore is 1

25 e
3x+(C1+C2x)e

¡2x, which matches what we got before.
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Example 117. (homework) Determine the general solution of y 00+4y 0+4y=7e¡2x.

(a) Using the method of undetermined coefficients.

(b) Using variation of constants.

Solution.

(a) We already did this in Example 90: The characteristic roots are ¡2;¡2. The roots for the inhomogeneous
part are ¡2. Hence, there has to be a particular solution of the form yp=Cx2e¡2x. To find the value
of C, we plug into the DE.
yp
0 =C(¡2x2+2x)e¡2x

yp
00=C(4x2¡ 8x+2)e¡2x

yp
00+4yp

0 +4yp=2Ce¡2x=
!
7e¡2x

It follows that C=7/2, so that yp=
7

2
x2e¡2x. The general solution is y(x)=

�
C1+C2x+

7

2
x2
�
e¡2x.

(b) This DE is of the form Ly= f(x) with L=D2+4D+4 and f(x)= 7e¡2x.
Since L=(D+2)2, the homogeneous DE has the two solutions y1= e¡2x, y2=xe¡2x.
The corresponding Wronskian is W = y1y2

0 ¡ y1
0 y2= e¡2x(1¡ 2x)e¡2x¡ (¡2e¡2x)xe¡2x= e¡4x.

By variation of parameters (Theorem 114), we find that a particular solution is

yp = ¡y1
Z
y2f
W

dx+ y2

Z
y1f
W

dx

= ¡e¡2x
Z
7xdx

=
7
2
x2

+ xe¡2x
Z
7dx

=7x

=
7
2
x2e¡2x:

The general solution therefore is 7
2
x2e¡2x+(C1+C2x)e

¡2x, which matches what we got before.

Systems of differential equations

Modeling two connected fluid tanks

Example 118. Consider two brine tanks. Initially, tank T1 is filled with 24gal water containing
3lb salt, and tank T2 with 9gal pure water.

� T1 is being filled with 54gal/min water containing 0.5lb/gal salt.

� 72gal/min well-mixed solution flows out of T1 into T2.

� 18gal/min well-mixed solution flows out of T2 into T1.

� Finally, 54gal/min well-mixed solution is leaving T2.

Derive a system of equations for the amount of salt in the tanks after t minutes.
Solution. Note that the amount of water in each tank is constant because the flows balance each other.
Let yi(t) denote the amount of salt (in lb) in tank Ti after time t (in min). In the time interval [t; t+�t]:

�y1� 54 � 1
2
��t¡ 72 � y1

24
��t+ 18 � y2

9
��t, so y10 = 27¡ 3y1+2y2. Also, y1(0)= 3.

�y2� 72 � y1
24
��t¡ (18+ 54) � y2

9
��t, so y20 =3y1¡ 8y2. Also, y2(0)=0.

In conclusion, we have obtained the system of equations

y1
0 = ¡3y1+2y2+ 27; y1(0)= 3;

y2
0 = 3y1¡ 8y2; y2(0)= 0:

We will soon learn how to solve such systems of DEs.
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Notes for Lecture 27 Wed, 10/30/2024

Example 119. Consider two brine tanks. Initially, tank T1 is filled with 10gal water containing
2lb salt, and tank T2 with 5gal pure water.

� T1 is being filled with 4gal/min water containing 0.5lb/gal salt.

� 5gal/min well-mixed solution flows out of T1 into T2.

� 2gal/min well-mixed solution flows out of T2 into T1.

� Finally, 1gal/min well-mixed solution is leaving T2.

Derive a system of equations for the amount of salt in the tanks after t minutes.
Solution. Let Vi(t) denote the amount of solution (in gal) in tank Ti after time t (in min). Then V1(t) =
10+4t¡ 5t+2t= 10+ t while V2(t)= 5+5t¡ 2t¡ t=5+2t.
Let yi(t) denote the amount of salt (in lb) in tank Ti after time t (in min). In the time interval [t; t+�t]:

�y1� 4 � 12 ��t¡ 5 �
y1
V1
��t+2 � y2

V2
��t, so y10 =2¡ 5y1

V1
+2

y2
V2
. Also, y1(0)= 2.

�y2� 5 � y1V1 ��t¡ (2+ 1) � y2
V2
��t, so y20 =5

y1
V1
¡ 3y2

V2
. Also, y2(0)= 0.

In conclusion, we have obtained the system of equations

y1
0 = ¡ 5

10+ t
y1+

2
5+2t

y2+2; y1(0)= 2;

y2
0 =

5
10+ t

y1¡
3

5+2t
y2; y2(0)= 0:

Note that this is a system of linear DEs. It is inhomogeneous (because of the +2 in the first equation). Its
coefficients are not constant.

In matrix-vector form. If we write y=
�
y1
y2

�
, then the system becomes

y 0=

24 ¡ 5

10+ t

2

5+2t
5

10+ t
¡ 3

5+ 2t

35y+� 2
0

�
; y(0)=

�
2
0

�
:

Higher-order linear DEs as first-order systems

The following examples show that any higher-order DE can be converted to a system of first-order
DEs. This illustrates why we care about systems of DEs, even if we work with only one function.
It is also the reason why we looked at results like the uniqueness and existence theorem or Euler's
method only for first-order DEs.
These results can be naturally generalized from a single DE to a system of DEs.

Example 120. Write the (second-order) differential equation y 00=2y 0+5y as a system of (first-
order) differential equations.
Solution. Write y1= y and y2= y 0. Then y00=2y 0+5y becomes y2

0 =2y2+5y1.

Therefore, y 00=2y0+5y translates into the first-order system
�
y1
0 = y2
y2
0 =5y1+2y2

.

In matrix-vector form, this is y 0=
�
0 1
5 2

�
y.

Advanced comment. Here, we only use the matrix-vector notation as a device for writing the system of equations
in a more compact form. However, it turns out that the matrix-vector notation makes certain techniques more
transparent (just like writing a system of equations in the form Ax= b suggests introducing the matrix inverse
to simply write x=A¡1b). For instance, the unique solution to a homogeneous linear system y 0=My (where
M is a matrix with constant entries) with initial condition y(0) = c can be expressed as y(x) = eMxc, just as
in the case of a single linear DE. Here, eMx is the matrix exponential. This will be one of the topics discussed
in both Differential Equations II and Linear Algebra II.
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Example 121. Write the (third-order) differential equation y 000=3y 00¡ 2y 0+4y as a system of
(first-order) differential equations.

Solution. Write y1= y, y2= y 0 and y3= y 00.

Then, y000=3y00¡ 2y 0+4y translates into the first-order system

8<:y1
0 = y2
y2
0 = y3
y3
0 =4y1¡ 2y2+3y3

.

In matrix-vector form, this is y 0=

24 0 1 0
0 0 1
4 ¡2 3

35y.

Example 122. Consider the following system of (second-order) initial value problems:

y1
00=2y10 ¡ 3y20 +7y2
y2
00=4y10 + y2

0 ¡ 5y1
y1(0)=2; y10(0)= 3; y2(0)=¡1; y20(0)= 1

Write it as a first-order initial value problem in the form y 0=My, y(0)= y0.

Solution. Introduce y3= y1
0 and y4= y2

0 . Then, the given system translates into

y 0=

266664
0 0 1 0
0 0 0 1
0 7 2 ¡3
¡5 0 4 1

377775y; y(0)=

266664
2
¡1
3
1

377775:
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Notes for Lecture 28 Fri, 11/1/2024

Example 123. (Halloween scare!) Let a = b. Then a2 = ab, so a2 + a2 = a2 + ab or
2a2=a2+ab. Hence, 2a2¡2ab=a2¡ab or 2(a2¡ab)=a2¡ab. Cancelling, we arrive at 2=1.
[Can you see the foul but disguised division by zero?!]

Example 124. Consider the following system of initial value problems:

y1
000=2y100¡ 3y1+7y2
y2
00=4y10 + y2

0 +5y2
y1(0)= 2; y10(0)= 3; y100(0)= 4; y2(0)=¡1; y20(0)=1

Write it as a first-order initial value problem in the form y 0=My, y(0)= y0.

Solution. Introduce y3= y1
0 , y4= y1

00 and y5= y2
0 . Then, the given system translates into

y 0=

2666666664
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
¡3 7 0 2 0
0 5 4 0 1

3777777775y; y(0)=

2666666664
2
¡1
3
4
1

3777777775:

Solving systems of differential equations

Example 125. Determine the general solution to y1
0 =5y1+4y2+ e2x, y2

0 =8y1+ y2.

Solution. From the second equation it follows that y1 =
1

8
(y2
0 ¡ y2). Using this in the first equation, we get

1

8
(y2
00¡ y2

0)=
5

8
(y2
0 ¡ y2)+ 4y2+ e2x. After multiplying with 8, this is y2

00¡ y2
0 =5(y2

0 ¡ y2)+ 32y2+8e2x.

Simplified, this is y2
00¡6y20¡27y2=8e2x, which is an inhomogeneous linear DE with constant coefficients which

we know how to solve:

� Since the characteristic roots of the homogeneous DE are ¡3; 9, while the characteristic root for the
inhomogeneous part is 2, there must be a particular solution of the form yp = Ce2x. Plugging this yp

into the DE, we get yp
00¡ 6yp0 ¡ 27yp=(4¡ 6 � 2¡ 27)Ce2x=¡35Ce2x=

!
8e2x. Hence, C =¡ 8

35
.

� We therefore obtain y2=¡ 8

35
e2x+C1e

¡3x+C2e
9x as the general solution to the inhomogeneous DE.

We can then determine y1 as

y1 =
1
8
(y2
0 ¡ y2)

=
1
8

�
¡16
35
e2x¡ 3C1e¡3x+9C2e

9x+
8
35
e2x¡C1e¡3x¡C2e9x

�
= ¡ 1

35
e2x¡ 1

2
C1e

¡3x+C2e
9x:
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Solution. (alternative) We can also start with y2=
1

4
y1
0 ¡ 5

4
y1¡ 1

4
e2x (from the first equation), although the

algebra will require a little more work. In that case, we have y2
0 =

1

4
y1
00¡ 5

4
y1
0 ¡ 1

2
e2x. Using this in the second

equation, we get 1
4
y1
00¡ 5

4
y1
0 ¡ 1

2
e2x=8y1+

1

4
y1
0 ¡ 5

4
y1¡ 1

4
e2x.

Simplified, this is y1
00¡ 6y10 ¡27y1= e2x, which is an inhomogeneous linear DE with constant coefficients which

know how to solve:

� Since the characteristic roots of the homogeneous DE are ¡3; 9, while the characteristic root for the
inhomogeneous part is 2, there must be a particular solution of the form yp = Ce2x. Plugging this yp

into the DE, we get yp
00¡ 6yp0 ¡ 27yp=(4¡ 6 � 2¡ 27)Ce2x=¡35Ce2x=

!
e2x. Hence, C =¡ 1

35 .

� We therefore obtain y1=¡
1

35e
2x+C1e

¡3x+C2e
9x as the general solution to the inhomogeneous DE.

We can then determine y2 as

y2 =
1
4
y1
0 ¡ 5

4
y1¡

1
4
e2x

=
1
4

�
¡ 2
35
e2x¡ 3C1e¡3x+9C2e

9x

�
¡ 5
4

�
¡ 1
35
e2x+C1e

¡3x+C2e
9x

�
¡ 1
4
e2x

= ¡ 8
35
e2x¡ 2C1e¡3x+C2e

9x:

Important. Make sure you can explain why both of our solutions are equivalent!

Example 126.

(a) Determine the general solution to y1
0 =5y1+4y2, y20 =8y1+ y2.

Comment. In matrix form, with y=
�
y1
y2

�
, this is y 0=

�
5 4
8 1

�
y.

(b) Solve the IVP y1
0 =5y1+4y2, y20 =8y1+ y2, y1(0)= 0, y2(0)= 1.

Solution.

(a) Note that this is the homogeneous system corresponding to the previous problem. It therefore follows
from our previous solution (the latter one) that y1=C1e

¡3x+C2e
9x and y2=¡2C1e¡3x+C2e

9x is
the general solution of the homogeneous system.

(b) We already have the general solutions y1, y2 to the two DEs. We need to determine the (unique) values

of C1 and C2 to match the initial conditions: y1(0)=C1+C2=
!
0, y2(0)=¡2C1+C2=

!
1

We solve these two equations and find C1=¡
1

3
and C2=

1

3
.

The unique solution to the IVP therefore is y1=¡1

3
e¡3x+

1

3
e9x and y2=

2

3
e¡3x+

1

3
e9x.
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Notes for Lecture 29 Mon, 11/4/2024

We now revisit and continue Example 118:

Example 127. Consider two brine tanks. Initially, tank T1 is filled with 24gal water containing
3lb salt, and tank T2 with 9gal pure water.

� T1 is being filled with 54gal/min water containing 0.5lb/gal salt.

� 72gal/min well-mixed solution flows out of T1 into T2.

� 18gal/min well-mixed solution flows out of T2 into T1.

� Finally, 54gal/min well-mixed solution is leaving T2.

How much salt is in the tanks after t minutes?
Solution. Note that the amount of water in each tank is constant because the flows balance each other.
Let yi(t) denote the amount of salt (in lb) in tank Ti after time t (in min). In the time interval [t; t+�t]:

�y1� 54 � 1
2
��t¡ 72 � y1

24
��t+ 18 � y2

9
��t, so y10 = 27¡ 3y1+2y2. Also, y1(0)= 3.

�y2� 72 � y1
24
��t¡ (18+ 54) � y2

9
��t, so y20 =3y1¡ 8y2. Also, y2(0)=0.

In conclusion, we have obtained the system of equations

y1
0 = ¡3y1+2y2+ 27; y1(0)= 3;

y2
0 = 3y1¡ 8y2; y2(0)= 0:

One strategy to solve this system is to first combine the two DEs to get a single equation for y1.

� From the first DE, we get y2=
1

2
y1
0 +

3

2
y1¡

27
2
.

� Using this in the second DE, we obtain
�
1

2
y1
0 +

3

2
y1¡ 27

2

�0
=3y1¡ 8

�
1

2
y1
0 +

3

2
y1¡ 27

2

�
.

Simplified, this is y1
00+ 11y10 + 18y1= 216.

� We already have the initial condition y1(0)=3. We get a second one by combining y2=
1

2
y1
0 +

3

2
y1¡ 27

2

with y2(0)= 0 to get 0= y2(0)=
1

2
y1
0(0)+

3

2
y1(0)¡ 27

2
=
1

2
y1
0(0)¡ 9, which simplifies to y1

0(0)= 18.

� The IVP y1
00+11y10+18y1=216with initial conditions y1(0)=3 and y10(0)=18 is one that we can solve!

� The general solution of the corresponding homogeneous equation is yh=C1e
¡2t+C2e

¡9t.

� The simplest particular solution is of the form yp=C. Plugging into the DE, we find yp=
216
18

=12.

� Hence, the general solution to the (inhomogeneous) DE is y(x)= 12+C1e
¡2t+C2e

¡9t.

We then use the initial conditions y(0)=12+C1+C2=
!
3, y 0(0)=¡2C1¡9C2=

!
18 to find that

for the unique solution of the IVP C1=¡9, C2=0.

It has the unique solution y1(t)= 12¡ 9e¡2t.

� It follows that y2=
1

2
y1
0 +

3

2
y1¡

27
2
=
9

2
¡ 9

2
e¡2t.

Note. We could have found a particular solution with less calculations by observing (looking at the characteristic
roots of the homogeneous DE and the inhomogeneous part) that there must be a solution of the form yp(t)=a.
We can then find a by plugging into the differential equation. However, noticing that, for a constant solution,
each tank has to have a constant concentration of 0.5lb/gal of salt, we find yp(t)=

�
12
4.5

�
.

In matrix-vector form. If we write y=
�
y1
y2

�
, our system takes the form

y 0=

�
¡3 2
3 ¡8

�
y+

�
27
0

�
; y(0)=

�
3
0

�
:
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Example 128. (extra) Three brine tanks T1; T2; T3.

T1 contains 20gal water with 10lb salt, T2 40gal pure water, T3 50gal water with 30lb salt.

T1 is filled with 10gal/min water with 2lb/gal salt. 10gal/min well-mixed solution flows out of
T1 into T2. Also, 10gal/min well-mixed solution flows out of T2 into T3. Finally, 10gal/min well-
mixed solution is leaving T3. How much salt is in the tanks after t minutes?
Solution. Let yi(t) denote the amount of salt (in lb) in tank Ti after time t (in min).
In the time interval [t; t+�t]:

�y1� 10 � 2 ��t¡ 10 y1
20 ��t, so y1

0 = 20¡ 1

2
y1. Also, y1(0)= 10.

�y2� 10 � y1
20
��t¡ 10 y2

40
��t, so y20 =

1

2
y1¡ 1

4
y2. Also, y2(0)=0.

�y3� 10 � y2
40
��t¡ 10 y3

50
��t, so y30 =

1

4
y2¡ 1

5
y3. Also, y3(0)= 30.

Using matrix notation and writing y=

24 y1
y2
y3

35, this is y 0=
24 ¡1/2 0 0

1/2 ¡1/4 0
0 1/4 ¡1/5

35y+
24 20

0
0

35, y(0)=
24 10

0
30

35.
We can actually solve this IVP!
[Do it! Start by finding y1 from the first DE, then move on to y2 . . . ]

Here, we content ourselves with finding a particular solution (and ignoring the initial conditions). The method
of undetermined coefficients tells us that there is a solution of the form yp(t)=a. Of course, we can find a by
plugging into the differential equation. However, noticing that, for a constant solution, each tank has to have a
concentration of 2lb/gal of salt, we find yp=(40; 80; 100) without calculation.
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Notes for Lecture 30 Wed, 11/6/2024

Excursion: Euler's identity

Let's revisit Euler's identity from Theorem 82.

Theorem 129. (Euler's identity) eix= cos(x)+ i sin(x)

Proof. Observe that both sides are the (unique) solution to the IVP y 0= iy, y(0)= 1.
[Check that by computing the derivatives and verifying the initial condition! As we did in class.] �

On lots of T-shirts. In particular, with x = �, we get e�i=¡1 or ei� + 1 = 0 (which connects the five
fundamental constants).

Example 130. Where do trig identities like sin(2x)=2cos(x)sin(x) or sin2(x)= 1¡ cos(2x)
2

(and
infinitely many others!) come from?

Short answer: they all come from the simple exponential law ex+y= exey.
Let us illustrate this in the simple case (ex)2= e2x. Observe that

e2ix = cos(2x)+ i sin(2x)
eixeix = [cos(x)+ i sin(x)]2= cos2(x)¡ sin2(x)+ 2i cos(x)sin(x):

Comparing imaginary parts (the �stuff with an i�), we conclude that sin(2x)= 2cos(x)sin(x).
Likewise, comparing real parts, we read off cos(2x)= cos2(x)¡ sin2(x).

(Use cos2(x)+ sin2(x)= 1 to derive sin2(x)= 1¡ cos(2x)
2

from the last equation.)

Challenge. Can you find a triple-angle trig identity for cos(3x) and sin(3x) using (ex)3= e3x?

Or, use ei(x+y)= eixeiy to derive cos(x+ y)= cos(x)cos(y)¡ sin(x)sin(y) and sin(x+ y)= :::

Realize that the complex number ei�=cos(�)+ i sin(�) corresponds to the point (cos(�); sin(�)).
These are precisely the points on the unit circle!

Recall that a point (x; y) can be represented using polar coordinates (r; �), where r is the
distance to the origin and � is the angle with the x-axis.

Then, x= r cos� and y= r sin�.

Every complex number z can be written in polar form as z= rei�, with r= jz j.

Why? By comparing with the usual polar coordinates (x= r cos� and y= r sin�), we can write

z=x+ iy= r cos�+ ir sin�= rei�:

In the final step, we used Euler's identity.
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Notes for Lecture 31 Fri, 11/8/2024

Hyperbolic sine and cosine

Review. Euler's formula states that eit= cos(t)+ i sin(t).

Recall that a function f(t) is even if f(¡t)= f(t). Likewise, it is odd if f(¡t)=¡t.
Note that f(t) = tn is even if and only if n is even. Likewise, f(t) = tn is odd if and only if n is odd. That's
where the names are coming from.

Any function f(t) can be decomposed into an even and an odd part as follows:

f(t)= feven(t)+ fodd(t); feven(t)=
1
2
(f(t)+ f(¡t)); fodd(t)=

1
2
(f(t)¡ f(¡t)):

Verify that feven(t) indeed is even, and that fodd(t) indeed is an odd function (regardless of f(t)).

Example 131. The hyperbolic cosine, denoted cosh(t), is the even part of et. Likewise, the
hyperbolic sine, denoted sinh(t), is the odd part of et.

� Equivalently, cosh(t)= 1

2
(et+ e¡t) and sinh(t)= 1

2
(et¡ e¡t).

� In particular, et= cosh(t)+ sinh(t).
As recalled above, any function is the sum of its even and odd part.
Comparing with Euler's formula, we find cosh(it)= cos(t) and sinh(it)= i sin(t). This indicates that
cosh and sinh are related to cos and sin, as their name suggests (see below for the �hyperbolic� part).

� d

dt
cosh(t)= sinh(t) and d

dt
sinh(t)= cosh(t).

� cosh(t) and sinh(t) both satisfy the DE y 00= y.
We can write the general solution as C1et+C2e

¡t or, if useful, as C1 cosh(t)+C2 sinh(t).

� cosh(t)2¡ sinh(t)2=1
Verify this by substituting cosh(t)= 1

2
(et+ e¡t) and sinh(t)= 1

2
(et¡ e¡t).

Note that the equation x2¡ y2=1 describes a hyperbola (just like x2+ y2=1 describes a circle).

The above equation is saying that
�
x
y

�
=

�
cosh(t)
sinh(t)

�
is a parametrization of the hyperbola.

Comment. Circles and hyperbolas are conic sections (as are ellipses and parabolas).
Comment. Hyperbolic geometry plays an important role, for instance, in special relativity:
https://en.wikipedia.org/wiki/Hyperbolic_geometry

Homework. Write down the parallel properties of cosine and sine.

-2.0 -1.5 -1.0 -0.5 0.5 1.0 1.5 2.0

-3.0

-2.0

-1.0

1.0

2.0

3.0

4.0

cosh(x)
sinh(x)
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Notes for Lecture 32 Fri, 11/15/2024

The Laplace transform

Definition 132. The Laplace transform of a
function f(t), t>0, is defined as the new function

F (s)=
Z
0

1
e¡stf(t)dt:

We also write L(f(t))=F (s).
Note that, in order for the integral to exist, f(t) should
be, say, piecewise continuous and of at most exponential
growth. That's true for most of the functions we are
interested in (and so we will not dwell on this issue).

f(t) F (s)
eat

1

s¡ a

1 1

s

cos(!t) s

s2+!2

sin(!t) !

s2+!2

c1f1(t)+ c2f2(t) c1F1(s)+ c2F2(s)
f 0(t) sF (s)¡ f(0)
f 00(t) s2F (s)¡ sf(0)¡ f 0(0)

First entries in the Laplace transform table

In this section, we will discuss and obtain the entries in the table of the most basic Laplace
transforms that we compiled after Definition 132.

Example 133. Show that L(eat)= 1

s¡ a .

In particular, in the special case a=0, we have L(1)= 1

s
.

Solution. L(eat)=
Z
0

1
e¡steatdt=

Z
0

1
e(a¡s)tdt=

�
1

a¡ se
(a¡s)t

�
t=0

1
=0¡ 1

a¡ s =
1

s¡ a
Comment. Note that we needed a¡ s < 0 in order for the integral to converge. Hence the Laplace transform
has domain s>a. (During this introduction, we will not care too much about these technical details.)
In particular. Note that setting a=0 shows that L(1)= 1

s
.

Example 134. (linearity) Show that L(c1f1(t)+ c2f2(t))= c1F1(s)+ c2F2(s).
This means that the Laplace transform is a linear operator (like the derivative or the integral).

Solution.

L(c1f1(t)+ c2f2(t)) =

Z
0

1
e¡st(c1f1(t)+ c2f2(t))dt

= c1

Z
0

1
e¡stf1(t)dt

F1(s)

+ c2

Z
0

1
e¡stf2(t)dt

F2(x)

Example 135. Show that L(cos(!t))= s

s2+!2
and L(sin(!t))= !

s2+!2
.

Solution. By Euler's identity, ei!t= cos(!t)+ i sin(!t). Hence, by linearity,

L(ei!t)=L(cos(!t))+ iL(sin(!t)):

On the other hand,

L(ei!t)= 1
s¡ i! =

s+ i!

s2+!2
=

s

s2+!2
+ i

!

s2+!2
:

Matching real and imaginary parts, we find L(cos(!t))= s

s2+!2
and L(sin(!t))= !

s2+!2
.
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Example 136. Determine L(e3t¡ 7e¡2t).
Solution. L(e3t¡ 7e¡2t)=L(e3t)¡ 7L(e¡2t)= 1

s¡ 3 ¡
7

s+2

Comment. Note that, once we write 1

s¡ 3 ¡
7

s+2
=¡ 6s¡ 23

s2¡ s¡ 6 it is no longer visibly clear which function we
have taken the Laplace transform of. We discuss reversing this process in the next section.

Example 137. Determine L(3cos(2t)¡ 5sin(2t)).
Solution. L(3cos(2t)¡ 5sin(2t))= 3L(cos(2t))¡ 5L(sin(2t))= 3

s

s2+4
¡ 5 2

s2+4
=
3s¡ 10
s2+4

Example 138. Show that L(f 0(t))= sF (s)¡ f(0).
Solution. Using integration by parts,

L(f 0(t))=
Z
0

1
e¡stf 0(t)dt=

h
e¡stf(t)

i
t=0

1
+

Z
0

1
se¡stf(t)dt= sF (s)¡ f(0):

Higher derivatives. In order to obtain the Laplace transform of higher derivatives, we can iterate. For instance,

L(f 00(t))= sL(f 0(t))¡ f 0(0)= s[sF (s)¡ f(0)]¡ f 0(0)= s2F (s)¡ sf(0)¡ f 0(0):
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Notes for Lecture 33 Mon, 11/18/2024

The inverse Laplace transform

Theorem 139. (uniqueness of Laplace transforms) If L(f1(t))=L(f2(t)), then f1(t)= f2(t).
Hence, we can recover f(t) from F (s). We write L¡1(F (s))= f(t).
We say that f(t) is the inverse Laplace transform of F (s).

Advanced comment. This uniqueness is true for continuous functions f1; f2. It is also true for piecewise
continuous functions except at those values of t for which there is a discontinuity. (Note that redefining f(t)
at a single point, will not change its Laplace transform.)

Example 140. Determine the inverse Laplace transform L¡1
�

5

s+3

�
.

Solution. In other words, if F (s)= 5

s+3
, what is f(t)?

L¡1
�

5

s+3

�
=5L¡1

�
1

s+3

�
=5e¡3t

Example 141. (extra) Determine the inverse Laplace transform L¡1
�
3s¡ 7
s2+4

�
.

Solution. In other words, if F (s)= 3s¡ 7
s2+4

, what is f(t)?

F (s)= 3
s

s2+22
¡ 7

2

2

s2+22
. Hence, f(t)= 3cos(2t)¡ 7

2
sin(2t).

Example 142. Determine the inverse Laplace transform L¡1
�
¡ 6s¡ 23
s2¡ s¡ 6

�
.

Solution. Note that s2¡s¡6=(s¡3)(s+2). We use partial fractions to write¡ 6s¡ 23
(s¡ 3)(s+2)

=
A

s¡ 3+
B

s+2
.

We find the coefficients (see brief review below) as

A=¡6s¡ 23
s+2

��������
s=3

=1; B=¡6s¡ 23
s¡ 3

��������
s=¡2

=¡7:

Hence L¡1
�
¡ 6s¡ 23
s2¡ s¡ 6

�
=L¡1

�
1

s¡ 3 ¡
7

s+2

�
=L¡1

�
1

s¡ 3

�
¡ 7L¡1

�
7

s+2

�
= e3t¡ 7e¡2t.

Review. In order to find A, we multiply ¡ 6s¡ 23
(s¡ 3)(s+2)

=
A

s¡ 3 +
B

s+2
by s¡3 to get ¡6s¡ 23

s+2
=A+

B(s¡ 3)
s+2

.
We then set s=3 to find A as above.
Comment. Compare with Example 136 where we considered the same functions.

Example 143. Determine the inverse Laplace transform L¡1
�

s+ 13
s2¡ s¡ 2

�
.

Solution. Note that s2¡ s¡ 2= (s¡ 2)(s+1). We use partial fractions to write s+ 13
(s¡ 2)(s+1)

=
A

s¡ 2 +
B

s+1
.

We find the coefficients as

A=
s+ 13
s+1

��������
s=2

=5; B=
s+ 13
s¡ 2

��������
s=¡1

=¡4:

Hence L¡1
�

s+ 13
s2¡ s¡ 2

�
=L¡1

�
5

s+1
¡ 4

s¡ 2

�
=5et¡ 4e2t.
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Solving simple DEs using the Laplace transform

In the following examples, we write Y (s) for the Laplace transform of y(t).
Recall from our Laplace transform table that this implies that the Laplace transform of y 0(t) is sY (s)¡ y(0).

Example 144. Solve the (very simple) IVP y 0(t)¡ 2y(t)= 0, y(0)= 7.
At this point, you might be able to �see� right away that the unique solution is y(t)= 7e2t.

Solution. (old style) The characteristic root is 2, so that the general solution is y(t)=Ce2t. Using the initial
condition, we find that C =7, so that y(t)= 7e2t.

Solution. (Laplace style) y 0 ¡ 2 y =0 transforms into

L(y 0(t)¡ 2y(t))=L(y 0(t))¡ 2L(y(t))= sY (s)¡ y(0) ¡ 2 Y (s) = (s¡ 2)Y (s)¡ 7=0:

This is an algebraic equation for Y (s). It follows that Y (s) = 7

s¡ 2 . By inverting the Laplace transform, we
conclude that y(t)= 7e2t.

Example 145. Solve the IVP y 00¡ 3y 0+2y= e¡t, y(0)= 0, y 0(0)= 1.
Solution. (old style) The characteristic polynomial D2¡ 3D+2=(D¡ 1)(D¡ 2) has roots 1; 2.
The characteristic root for the inhomogeneous part is¡1. Since there is no duplication, there must be a particular
solution of the form yp(t)=Ae¡t.

To determine A, we plug into the DE yp
00¡ 3yp0 +2yp=6Ae¡t=

!
e¡t and conclude A= 1

6
.

The general solution thus is y(t)= 1

6
e¡t+C1e

t+C2e
2t. We need to find C1 and C2 using the initial conditions.

Solving y(0)= 1

6
+C1+C2=

!
0 and y 0(0)=¡1

6
+C1+2C2=

!
1, we find C2=

4

3
and C1=¡3

2
.

Hence, the unique solution to the IVP is y(t)= 1

6
e¡t¡ 3

2
et+

4

3
e2t.

Solution. (Laplace style) The differential equation (plus initial conditions!) transforms as follows:

L(y 00(t)) ¡ 3 L(y0(t)) + 2L(y(t)) = L(e¡t)

s2Y (s)¡ sy(0)¡ y 0(0) ¡ 3( sY (s)¡ y(0) )+ 2Y (s) =
1

s+1

(s2¡ 3s+2)Y (s) = 1+
1

s+1
=
s+2
s+1

Y (s) =
s+2

(s2¡ 3s+2)(s+1)

=
s+2

(s¡ 1)(s¡ 2)(s+1)

To find y(t), we use partial fractions to write Y (s)= A

s¡ 1 +
B

s¡ 2 +
C

s+1
. We find the coefficients as

A=
s+2

(s¡ 2)(s+1)

��������
s=1

=¡3
2
; B=

s+2
(s¡ 1)(s+1)

��������
s=2

=
4
3
; C =

s+2
(s¡ 1)(s¡ 2)

��������
s=¡1

=
1
6
:

Hence, y(t)=L¡1
�

A

s¡ 1 +
B

s¡ 2 +
C

s+1

�
=Aet+Be2t+Ce¡t=

1

6
e¡t¡ 3

2
et+

4

3
e2t, as above.

Comment. Note the factor s2¡3s+2 in front of Y (s) when we transformed the DE. This is the characteristic
polynomial. Can you see how the characteristic roots of the homogeneous DE and the inhomogeneous part show
up in the Laplace transform approach?

Example 146. Consider the IVP y 00¡ 3y 0+2y= e¡t, y(0)=0, y 0(0)= 1.
Determine the Laplace transform of the unique solution.

Solution. We just did that! By transforming the DE, we found that Y (s)= s+2

(s¡ 1)(s¡ 2)(s+1)
.
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Notes for Lecture 34 Wed, 11/20/2024

Example 147. (review) Determine the inverse Laplace transform L¡1
�
¡ 6s¡ 23
s2¡ s¡ 6

�
.

Solution. Note that s2¡s¡6=(s¡3)(s+2). We use partial fractions to write¡ 6s¡ 23
(s¡ 3)(s+2)

=
A

s¡ 3+
B

s+2
.

We find the coefficients (see brief review below) as

A=¡6s¡ 23
s+2

��������
s=3

=1; B=¡6s¡ 23
s¡ 3

��������
s=¡2

=¡7:

Hence L¡1
�
¡ 6s¡ 23
s2¡ s¡ 6

�
=L¡1

�
1

s¡ 3 ¡
7

s+2

�
=L¡1

�
1

s¡ 3

�
¡ 7L¡1

�
7

s+2

�
= e3t¡ 7e¡2t.

Review. In order to find A, we multiply ¡ 6s¡ 23
(s¡ 3)(s+2)

=
A

s¡ 3 +
B

s+2
by s¡3 to get ¡6s¡ 23

s+2
=A+

B(s¡ 3)
s+2

.
We then set s=3 to find A as above.
Comment. Compare with Example 136 where we considered the same functions.

Example 148. Consider the IVP y 00¡ 3y 0+ y=2e5t, y(0)=¡1, y 0(0)= 4.
Determine the Laplace transform of the unique solution.
Solution. The DE y 00 ¡ 3 y 0 + y= 2e5t (plus initial conditions!) transforms into

s2Y ¡ sy(0)¡ y 0(0) ¡ 3( sY ¡ y(0) )+Y =(s2¡ 3s+1)Y +(s¡ 7)= 2
s¡ 5 :

Accordingly, Y (s)= 1

s2¡ 3s+1

h
2

s¡ 5 ¡ s+7
i
is the Laplace transform of the unique solution to the IVP.

Comment. The characteristic roots are (3� 5
p

)/2. As a result, the solution y(t) will be rather unpleasant to
write down by hand, with coefficients that are not rational numbers. By contrast, the above Laplace transform
can be expressed without irrational numbers.
Comment. Depending on what we intend to do with the solution, we might not even need y(t) but might
instead be able to extract what we want from its Laplace transform Y (s).

Handling discontinuities with the Laplace transform

Let ua(t)=
�
1; if t> a;
0; if t < a;

be the unit step function. Throughout, we assume that a> 0.

Comment. The special case u0(t) is also known as the Heaviside function, after Oliver Heaviside who, among
many other things, coined terms like conductance and impedance. Note that ua(t)=u0(t¡ a).

Example 149. If a< b, then ua(t)¡ub(t)=
�
1; if a6 t < b;
0; otherwise:

Comment. See Example 151 for how to write piecewise-defined functions as combinations of unit step functions.

The following is a useful addition to our table of Laplace transforms:

Example 150. (new entry) We add the following to our table of Laplace transforms:

L(ua(t)f(t¡ a)) =
Z
a

1
e¡stf(t¡ a)dt=

Z
0

1
e¡s(t

~+a)f(t~)dt~

= e¡as
Z
0

1
e¡st~f(t~)dt~= e¡asF (s)

Comment. Note that the graph of ua(t)f(t¡ a) is the same as f(t) but delayed by a (make a sketch!).

In particular. L(ua(t))= e¡sa

s
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The next example illustrates that any piecewise defined function can be written using a single
formula involving step functions. This is based on the simple observation from Example 149 that
ua(t)¡ub(t) is a function which is 1 on the interval [a; b) but zero everywhere else.

Comment. For our present purposes, we don't really care about the precise value of a function at a single point.
Specifically, it doesn't really matter which value the function ua(t)¡ub(t) takes at t= b (technically, the value
is 0 but it may as well be 1 since there is a discontinuity at t= b).

Example 151. Write f(t)=

8>>>>>><>>>>>>:
0; if t < 0;

t2; if 06 t < 1;
3; if 16 t < 2;
cos(t¡ 2); if t> 2;

as a combination of unit step functions.

Solution. f(t)= t2(u0(t)¡u1(t))+ 3(u1(t)¡u2(t))+ cos(t¡ 2)u2(t)

Homework. Compute the Laplace transform of f(t) from here. Note that, for instance, to find L(t2u1(t)), we
want to use L(ua(t)f(t¡ a)) = e¡saF (s) with a= 1 and f(t¡ 1) = t2. Then, f(t) = (t+ 1)2= t2+ 2t+ 1

has Laplace transform F (s)=
2

s3
+

2

s2
+
1

s
. Combined, we get L(t2u1(t))= e¡s

�
2

s3
+

2

s2
+
1

s

�
.
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Notes for Lecture 35 Fri, 11/22/2024

Review. L(ua(t)f(t¡ a))= e¡asF (s)
Here, ua(t)f(t¡ a) is f(t) delayed by a.

In particular. L(ua(t))=
e¡as

s
(here, we use f(t)= 1 and F (s)= 1

s
).

Example 152. Determine the Laplace transform L(ertua(t)).
Solution. Write ertua(t)= f(t¡a)ua(t) with f(t)= er(t+a)= eraert. Since F (s)=L(f(t))= era

s¡ r , we have

L(ertua(t))= e¡saF (s)=
e¡(s¡r)a

s¡ r :

Example 153. Determine the inverse Laplace transform L¡1
�
e¡2s

s+3

�
.

Solution. 1

s+3
is the Laplace transform of e¡3t. Hence, e¡2s

s+3
is the Laplace transform of e¡3t delayed by 2.

In other words, L¡1
�
e¡2s

s+3

�
=u2(t)e

¡3(t¡2).

Comment. Note that this is one of the terms in our solution Y (s) in Example 154 (because s2 + 5s + 6 =
(s+2)(s+3)). Can you determine the full inverse Laplace transform of Y (s)?

In general. Likewise, we have L¡1
�
e¡as

s¡ r

�
=ua(t)e

r(t¡a) (namely, ert delayed by a).

Using these unit step functions, we can conveniently solve differential equations featuring certain
kinds of discontinuities.
Note that the DE in our next example describes the motion of a mass on a spring with damping, where the
external force is zero except for the time interval [2; 3) when we suddenly have a force equal to 5.

Example 154. Determine the Laplace transform of the unique solution to the initial value problem

y 00+5y 0+6y=
�
5; if 26 t < 3;
0; otherwise;

y(0)=¡4; y 0(0)=8:

Solution. First, we observe that the right-hand side of the differential equation can be written as 5(u2(t)¡u3(t)).
It follows from the Laplace transform table that L(ua(t)) = e¡as

1

s
(using the entry for ua(t)f(t ¡ a) with

f(t)= 1). Consequently, L(5(u2(t)¡u3(t)))= 5e¡2s
1

s
¡ 5e¡3s 1

s
=
5

s
(e¡2s¡ e¡3s).

Taking the Laplace transform of both sides of the DE, we therefore get

s2Y (s)¡ sy(0)¡ y 0(0)+5(sY (s)¡ y(0))+ 6Y (s)=
5
s
(e¡2s¡ e¡3s);

which using the initial values simplifies to

(s2+5s+6)Y (s)+ 4s¡ 8+5 � 4= 5
s
(e¡2s¡ e¡3s):

We conclude that the Laplace transform of the unique solution is

Y (s)=
1

s2+5s+6

�
5
s
(e¡2s¡ e¡3s)¡ 4s¡ 12

�
:

First challenge. Take the inverse Laplace transform to find y(t)! (See Examples 153 and 155.)
Second challenge. Solve the DE without using Laplace transforms! (First, solve the IVP for t<2 in which case
we have no external force. That tells us what y(2) and y 0(2) should be. Using these as the new initial conditions,
solve the IVP for t2 [2;3). Then, using y(3) and y 0(3), solve the IVP for t>3. In the end, you will have found the
solution y(t) in three pieces. On the other hand, the Laplace transform allows us to avoid working piece-by-piece.)
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Example 155. Solve the IVP y 00+3y 0+2y= f(t), y(0)= y 0(0)=0 with f(t)=
�
1; 36 t < 4;
0; otherwise:

Solution. First, we write f(t)=u3(t)¡u4(t). We can now take the Laplace transform of the DE to get

s2Y (s)¡ sy(0)¡ y 0(0)+3(sY (s)¡ y(0))+ 2Y (s)=
e¡3s

s
¡ e¡4s

s
=(e¡3s¡ e¡4s) 1

s
:

Using that s2+3s+2=(s+1)(s+2), we find

Y (s)= (e¡3s¡ e¡4s) 1
s(s+1)(s+2)

= (e¡3s¡ e¡4s)
�
A
s
+

B
s+1

+
C

s+2

�
;

where A; B; C are determined by partial fractions (we compute the values below). Taking the inverse Laplace
transform of each of the six terms in this product, as in Example 153, we find

y(t)=A(u3(t)¡u4(t))+B(u3(t)e
¡(t¡3)¡u4(t)e¡(t¡4))+C(u3(t)e

¡2(t¡3)¡u4(t)e¡2(t¡4)):

If preferred, we can express this as y(t)=

8>><>>:
0; if t < 3;

A+Be¡(t¡3)+Ce¡2(t¡3); if 36 t < 4;

B(e¡(t¡3)¡ e¡(t¡4))+C(e¡2(t¡3)¡ e¡2(t¡4)); if t> 4:

Finally, A= 1

(s+1)(s+2)

������
s=0

=
1

2
, B=

1

s(s+2)

������
s=¡1

=¡1, C =
1

s(s+1)

������
s=¡2

=
1

2
.

Comment. Check that these values make y(t) a continuous function (as it should be for physical reasons).

Example 156. (extra practice) Determine the Laplace transform of the unique solution to the
initial value problem

y 00¡ 6y 0+5y=

(
3e¡2t; if 16 t < 4;
0; otherwise;

y(0)= 2; y 0(0)=¡1:

Solution. First, we write the right-hand side of the differential equation as f(t) := 3e¡2t(u1(t) ¡ u4(t)). By

Example 152, the Laplace transform of f(t) is L(f(t))= 3
e¡(s+2)

s+2
¡ 3e

¡4(s+2)

s+2
=

3

s+2
(e¡(s+2)¡ e¡4(s+2)).

Taking the Laplace transform of both sides of the DE, we therefore get

s2Y (s)¡ sy(0)¡ y0(0)¡ 6(sY (s)¡ y(0))+ 5Y (s)=
3

s+2
(e¡(s+2)¡ e¡4(s+2));

which using the initial values simplifies to

(s2¡ 6s+5)Y (s)¡ 2s+ 13= 3
s+2

(e¡(s+2)¡ e¡4(s+2)):

We conclude that the Laplace transform of the unique solution is

Y (s)=
1

s2¡ 6s+5

�
3

s+2
(e¡(s+2)¡ e¡4(s+2))+ 2s¡ 13

�
:
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Notes for Lecture 36 Mon, 11/25/2024

Further entries in the Laplace transform table

Finally, we expand our table of Laplace transforms to the following:

f(t) F (s)
f 0(t) sF (s)¡ f(0)
f 00(t) s2F (s)¡ sf(0)¡ f 0(0)
eat

1

s¡ a
cos(!t) s

s2+!2

sin(!t) !

s2+!2

tn
n!

sn+1

eatf(t) F (s¡ a)
tf(t) ¡F 0(s)

ua(t)f(t¡ a) e¡asF (s)

Example 157. (new entry) We add the following to our table of Laplace transforms:

L(eatf(t))=
Z
0

1
e¡steatf(t)dt=

Z
0

1
e¡(s¡a)tf(t)dt=F (s¡ a)

Example 158. (new entry) We also add the following to our table of Laplace transforms:

L(tf(t))=
Z
0

1
e¡sttf(t)dt=

Z
0

1
¡ d
ds
e¡stf(t)dt=¡ d

ds

Z
0

1
e¡stf(t)dt=¡F 0(s)

In particular,

L(t) = L(t � 1)=¡ d
ds

1
s
=
1

s2

L(t2) = ¡ d
ds

1

s2
=
2

s3
���

L(tn) =
n!

sn+1
:

Example 159. Determine the Laplace transform L((t¡ 3)e2t).
Solution. L((t¡ 3)e2t)=L(te2t)¡ 3L(e2t)= 1

(s¡ 2)2 ¡
3

s¡ 2

Here, we combined L(tf(t))=¡F 0(s) with L(e2t)= 1

s¡ 2 to get L(te2t)=¡ d

ds

1

s¡ 2 =
1

(s¡ 2)2 .

Alternative. Combine L(t¡3)= 1

s2
¡ 3

s
and L(f(t)e2t)=F (s¡2) to again get L((t¡3)e2t)= 1

(s¡ 2)2¡
3

s¡ 2 .

Example 160. Determine the inverse Laplace transform L¡1
�

1

(s¡ 3)2

�
.

Solution. L¡1
�

1

(s¡ 3)2

�
= e3tL¡1

�
1

s2

�
= te3t.

Example 161. Determine the inverse Laplace transform L¡1
�

e¡2s

(s¡ 3)2

�
.

Solution. It follows from the previous example that L¡1
�

e¡2s

(s¡ 3)2

�
=u2(t)(t¡ 2) e3(t¡2).
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Example 162. Solve the IVP y 00¡ 3y 0+2y= et, y(0)= 0, y 0(0)= 1.
Solution. (old style, outline) The characteristic polynomial D2 ¡ 3D + 2 = (D ¡ 1)(D ¡ 2). Since there is
duplication, we have to look for a particular solution of the form yp=Ate

t. To determine A, we need to plug into
the DE (we find A=¡1). Then, the general solution is y(t)=Atet+C1e

t+C2e
2t, and the initial conditions

determine C1 and C2 (we find C1=¡2 and C2=2).

Solution. (Laplace style)

L(y 00(t))¡ 3L(y 0(t))+ 2L(y(t)) = L(et)

s2Y (s)¡ sy(0)¡ y 0(0)¡ 3(sY (s)¡ y(0))+ 2Y (s) =
1

s¡ 1
(s2¡ 3s+2)Y (s) = 1+

1
s¡ 1 =

s
s¡ 1

Y (s) =
s

(s¡ 1)2(s¡ 2)

To find y(t), we again use partial fractions. We find Y (s)= A

(s¡ 1)2 +
B

s¡ 1 +
C

s¡ 2 with coefficients (why?!)

C =
s

(s¡ 1)2

��������
s=2

=2; A=
s

s¡ 2

��������
s=1

=¡1; B=
d
ds

s
s¡ 2

��������
s=1

=
¡2

(s¡ 2)2

��������
s=1

=¡2:

Finally, y(t)=L¡1
�

A

(s¡ 1)2 +
B

s¡ 1 +
C

s¡ 2

�
=Atet+Bet+Ce2t=¡(t+2)et+2e2t.

More details on the partial fractions with a repeated root. Above we computed A;B;C so that

s

(s¡ 1)2(s¡ 2) =
A

(s¡ 1)2 +
B

s¡ 1 +
C

s¡ 2 :

� We can compute C as before by multiplying both sides with s¡ 2 and then setting s=2.

� Similarly, we can compute A by multiplying both sides with (s¡ 1)2 and then setting s=1.

� To compute B, multiply both sides by (s¡ 1)2 (as for A) to get s
(s¡ 2) =A+B(s¡ 1)+ C(s¡ 1)2

s¡ 2 .

Now, we take the derivative on both sides (so that A goes away) to get

¡2
(s¡ 2)2 =B+

C(2(s¡ 1)(s¡ 2)¡ (s¡ 1)2)
(s¡ 2)2

and we find B by setting s=1.
Comment. In fact, the term involving C had to drop out when plugging in s = 1, even after taking a
derivative. That's because, after multiplying with (s¡ 1)2, that term has a double root at s=1. When
taking a derivative, it therefore still has a (single) root at s=1.

Comment. A close relative to the Laplace transform is the Fourier transform:

F (!)=
Z
¡1

1
e¡i!tf(t)dt

Start with the Laplace transform and note that s= � + i! can be complex. If we focus on the
purely imaginary case �=0, and if f(t)= 0 for t < 0, then it turns into the Fourier transform.
We focused on the Laplace transform because it works particularly well for solving DEs. On the other hand, the
Fourier transform is only defined if f(t) decays sufficiently but works well for decomposing signals into their
constituent frequencies.
Advanced. You may have also seen Fourier series which work for functions on a bounded interval [¡L;L] (or,
equivalently, 2L-periodic functions), in which case only a single frequency and its multiples appear, whereas the
Fourier transform works for functions on the full real line (in a way, it is the limiting case L!1).
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