Very basic examples of differential equations

Example 1. If $y(x) = e^{x^2}$ then $y'(x) = 2xe^{x^2} = 2xy(x)$.

We say that $y(x) = e^{x^2}$ is a solution to the differential equation (DE) y' = 2xy.

Example 2. If $y(x) = \sin(3x)$ then $y'(x) = 3\cos(3x) = 3\sqrt{1-\sin^2(3x)}$. Hence, y(x) solves the differential equation $y'3\sqrt{1-y(x)^2}$.

On the other hand, $y''(x) = -9\sin(3x) = -9y(x)$. Thus, y(x) also solves the second order differential equation y'' = -9y.

Example 3. Verify that $e^{y}y' = 1$ is solved by $y(x) = \ln(x+C)$.

Solution. $y'(x) = \frac{1}{x+C}$ and $e^{y(x)} = x + C$. Hence, $e^y y' = 1$ indeed.

This means that $y(x) = \ln (x + C)$ is a one-parameter family of solutions to the DE.

Example 4. Consider the DE y'' = y' + 6y. For which r is e^{rx} a solution?

Solution. Plugging into the DE, we get $r^2e^{rx} = re^{rx} + 6e^{rx}$ which we simplify to $r^2 = r + 6$. This has the two solutions r = -2, r = 3. Hence e^{-2x} and e^{3x} are solutions of the DE.

In fact, we check that $Ae^{-2x} + Be^{3x}$ is a two-parameter family of solutions to the DE. (It is no coincidence that the order of the DE is 2, whereas the previous example is order 1.) \diamond

Example 5. Solve the DE $y' = x^2 + x$.

Solution. $y(x) = \int (x^2 + x) dx = \frac{1}{3}x^3 + \frac{1}{2}x^2 + C$. By the way, from Calculus, we know that there are no other solutions. In other words, we found the general solution.

To single out a particular solution, we can impose initial values such as y(0) = 1. Solve $y' = x^2 + x$ and y(0) = 1. This is called an initial value problem (IVP).

Solution. $\left[\frac{1}{3}x^3 + \frac{1}{2}x^2 + C\right]_{x=0} = C \stackrel{!}{=} 1$. Hence, $y(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 + 1$ is the (unique) solution of the IVP.