Sketch of Lecture 4 Mon, 01/27/2014

Review. Existence and uniqueness of solutions \Diamond

Example 15. Discuss the IVP $xy'=2y$, $y(a)=b$.

Solution. First, write as $y' = f(x, y)$ with $f(x, y) = 2y/x$. We compute $\frac{\partial}{\partial y}f(x, y) = 2/x.$

Therefore, both $f(x, y)$ and $\frac{\partial}{\partial y}f(x, y)$ are continuous for all (x, y) with $x \neq 0$. Hence, if $a \neq 0$ the IVP always has a (locally) unique solution.

We can verify that $y(x) = Cx^2$ solves the DE. (compare slope field!)

This means that the IVP with $y(0) = 0$ has infinitely many solutions. Since there are no other solutions (why?! look at slope field), the IVP with $y(0)=b$ has no solution if $b \neq 0$. \Diamond -3 -2 -1 0 1 2 3

Solving differential equations

Separation of variables

Example 16. Solve the IVP $xy' = 2y$, $y(1) = -1$.

 ${\bf Solution.}$ Write as $\frac{1}{y}$ dy $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2}{x}$ $\frac{2}{x}$, multiply with dx and integrate both sides (this might be nonsense but remember that we can [and should] test whether we found a solution, so let's not worry) to get $\int \frac{1}{y} dy = \int \frac{2}{x} dx$. Hence, $\ln |y| = 2\ln |x| + C$. Using $y(1) = 1$, we get $C = 0$ and thus $\ln (-y) = 2\ln x$ (close to the initial value, we have $|y| = -y$ and $|x| = x$). Solving for y, we find $y = -e^{2\ln x} = -x^2$. We easily verify that this is indeed a global solution (usually, it would only be a local solution and might have discontinuities such as poles). \Diamond

In general, separation of variables solves $y' = g(x)h(y)$ by writing the DE as $\frac{1}{h(y)} dy = g(x)dx$. Note that $\frac{1}{h(y)}$ dy $\frac{dy}{dx} = g(x)$ is indeed equivalent to $\int \frac{1}{h(y)} dy = \int g(x) dx + C$. Why?! (Apply $\frac{d}{dx}$ to the integrals...)

Example 17. $y' = x + y$ is a DE for which the variables can not be separated.

No worries, very soon we will have several tools to solve this DE as well. \diamondsuit

Example 18. Solve $y' = ky^2$.

Solution. Separate variables to get $\frac{1}{y^2}$ dy $\frac{dy}{dx} = k$. Integrating $\int \frac{1}{y^2} dy = \int k dx$, we find $-\frac{1}{y}$ $\frac{1}{y}$ = kx + C which we solve for y to get $y = -\frac{1}{C + kx} = \frac{1}{D - kx}$ (with $D = -C$). That's the solution we verified in an earlier lecture!

Note that we did not find the solution $y=0$ (lost when dividing by y^2). It is called a singular solution because it is not part of the general solution (the one-parameter family found above). \diamondsuit

Remark 19. We have to be careful about transforming our DE when using separation of variables: Just as the division by y^2 made us loose a solution, other transformations can add extra solutions which do not solve the original DE.

Here is a silly example (silly, because the transformation serves no purpose here) which still illustrates the point. The DE $(y-1)y' = (y-1)ky^2$ has the same solutions as $y' = ky^2$ plus the additional solution $y = 1$ (which does not solve $y'=ky^2$). \diamondsuit

