Sketch of Lecture 5

Example 20. Solve y' = ky.

Solution. Write as $\frac{dy}{dx} = ky$, then $\frac{1}{y}dy = kdx$ (note that we just lost the solution y = 0). Integrating gives $\ln |y| = kx + C$, hence $|y| = e^{kx+C}$. Since the RHS is never zero, $y = \pm e^{kx+C} = De^{kx}$ (with $D = \pm e^{C}$). Finally, note that D = 0 corresponds to the singular solution y = 0. In summary, the general solution is De^{kx} with $D \in \mathbb{R}$. \diamond

Example 21. Solve the IVP $y' = -\frac{x}{y}$, y(0) = -3.

Last time: unique solution guaranteed a priori.

Solution. Separate variables to get y dy = -x dx. Integrating gives $\frac{1}{2}y^2 = -\frac{1}{2}x^2 + C$, hence $x^2 + y^2 = D$ (with D=2C). Using y(0) = -3, we find $0^2 + (-3)^2 = D$. Thus, $x^2 + y^2 = 9$ is an implicit form of the solution. In this case, we can solve for y to get $y = -\sqrt{9-x^2}$. \diamond

Linear first-order equations

Example 22. Solve $\frac{\mathrm{d}y}{\mathrm{d}x} = 2xy^2$.

Solution. $\frac{1}{y^2}\frac{\mathrm{d}y}{\mathrm{d}x} = 2x, -\frac{1}{y} = x^2 + C$. Hence the general solution is $y = \frac{1}{D - x^2}$. There is also the singular solution y = 0

Solution. Note that $\frac{1}{y^2} \frac{dy}{dx} = 2x$ can be written as $\frac{d}{dx} \left[-\frac{1}{y} \right] = \frac{d}{dx} [x^2]$. Hence, $-\frac{1}{y} = x^2 + C$.

We now use the idea behind the second solution to solve other DEs.

The multiplication by $\frac{1}{u^2}$ will be replaced by multiplication with the so-called "integrating factor". \diamond

Example 23. Solve y' = x - y. (Note that we cannot use separation of variables.)

Solution. y' + y = x, now multiply with e^x (we will see in a moment, how to find this "integrating factor"). Then $e^x y' + e^x y = \frac{\mathrm{d}}{\mathrm{d}x} [e^x y]$. On the other hand, $x e^x = \frac{\mathrm{d}}{\mathrm{d}x} [x e^x - e^x]$. $\frac{\mathrm{d}}{\mathrm{d}x}[e^x y] = \frac{\mathrm{d}}{\mathrm{d}x}[xe^x - e^x] \text{ is equivalent to } e^x y = xe^x - e^x + C. \text{ Hence, } y = x - 1 + Ce^{-x}.$ \diamond

In general, we can solve any linear first-order equation y' + P(x)y = Q(x) in this way.

We want to multiply with an integrating factor f(x) such that the LHS of the DE becomes •

$$f(x)y' + f(x)P(x)y = \frac{\mathrm{d}}{\mathrm{d}x}[f(x)y].$$

Since $\frac{d}{dx}[f(x)y] = f(x)y' + f'(x)y$, we need f'(x) = f(x)P(x) for that.

- An f(x) with that property is $f(x) = e^{\int P(x) dx}$.
- The RHS of the DE only depends on x. It can be written as $f(x)Q(x) = \frac{d}{dx} [\int f(x)Q(x)dx]$. Hence, another way to write the DE is $\frac{d}{dx} [f(x)y] = \frac{d}{dx} [\int f(x)Q(x)dx]$.
- •
- This shows that $f(x)y = \int f(x)Q(x)dx + C$, which means we have found the general solution (only need to divide by f(x)).
- Note that this solution exists on any interval on which P and Q are continuous. (This is better than what Theorem 11 can predict.)

Example 24. Solve $x^2 y' = 1 - xy + 2x$, y(1) = 3.

Solution. Write as $\frac{dy}{dx} + P(x)y = Q(x)$ with $P(x) = \frac{1}{x}$ and $Q(x) = \frac{1}{x^2} + \frac{2}{x}$. Integrating factor $f(x) = e^{\ln x} = x$ (why do we write $\ln x$ instead of $\ln |x|$?). Hence, $xy = \int (\frac{1}{x} + 2)dx = \ln x + 2x + C$. Using y(1) = 3, we find C = 1. Solution $y = \frac{\ln (x) + 2x + 1}{x}$.

(Check!)