Sketch of Lecture 5 Tue, 01/28/2014

Example 20. Solve $y' = ky$.

Solution. Write as $\frac{dy}{dx} = ky$, then $\frac{1}{y}dy = kdx$ (note that we just lost the solution $y = 0$). Integrating gives $\ln|y| = kx + C$, hence $|y| = e^{kx+C}$. Since the RHS is never zero, $y = \pm e^{kx+C} = De^{kx}$ (with $D=\pm e^{C}$). Finally, note that $D=0$ corresponds to the singular solution $y=0$. In summary, the general solution is De^{kx} with $D \in \mathbb{R}$.

Example 21. Solve the IVP $y' = -\frac{x}{y}$ \overline{y}

Last time: unique solution guaranteed *a priori*.

Solution. Separate variables to get $y dy = -x dx$. Integrating gives $\frac{1}{2}y^2 = -\frac{1}{2}$ $\frac{1}{2}x^2 + C$, hence $x^2 + y^2 = D$ (with $D=2C$). Using $y(0)=-3$, we find $0^2+(-3)^2=D$. Thus, $x^2+y^2=9$ is an implicit form of the solution. In this case, we can solve for y to get $y = -\sqrt{9 - x^2}$. And the contract of the contract of the contract of \Diamond

Linear first-order equations

Example 22. Solve $\frac{dy}{dx} = 2xy^2$.

 ${\bf Solution.}~~ \frac{1}{y^2}$ $_{\mathrm{d}\mathit{y}}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x, -\frac{1}{y}$ $\frac{1}{y} = x^2 + C$. Hence the general solution is $y = \frac{1}{D - 1}$ $\frac{1}{D-x^2}$. There is also the singular solution $y = 0$.

Solution. Note that $\frac{1}{y^2}$ dy $\frac{dy}{dx} = 2x$ can be written as $\frac{d}{dx} \left[-\frac{1}{y} \right]$ $\left[\frac{1}{y}\right]=\frac{\mathrm{d}}{\mathrm{d}x}$ $\frac{\mathrm{d}}{\mathrm{d}x}[x^2]$. Hence, $-\frac{1}{y}$ $\frac{1}{y} = x^2 + C.$

We now use the idea behind the second solution to solve other DEs.

The multiplication by $\frac{1}{y^2}$ will be replaced by multiplication with the so-called "integrating factor".

Example 23. Solve $y'=x-y$. (Note that we cannot use separation of variables.)

Solution. $y' + y = x$, now multiply with e^x (we will see in a moment, how to find this "integrating factor"). Then $e^x y' + e^x y = \frac{d}{dt}$ $\frac{d}{dx}[e^x y]$. On the other hand, $xe^x = \frac{d}{dx}$ $\frac{\mathrm{d}}{\mathrm{d}x}[xe^x - e^x].$ d $\frac{d}{dx}[e^x y] = \frac{d}{dx}[xe^x - e^x]$ is equivalent to $e^x y = xe^x - e^x + C$. Hence, $y = x - 1 + Ce^{-x}$.

In general, we can solve any linear first-order equation $y' + P(x)y = Q(x)$ in this way.

We want to multiply with an integrating factor $f(x)$ such that the LHS of the DE becomes

$$
f(x)y' + f(x)P(x)y = \frac{d}{dx}[f(x)y].
$$

Since $\frac{d}{dx}[f(x)y] = f(x)y' + f'(x)y$, we need $f'(x) = f(x)P(x)$ for that.

- An $f(x)$ with that property is $f(x) = e^{\int P(x)dx}$
- The RHS of the DE only depends on x. It can be written as $f(x)Q(x) = \frac{d}{dx}[\int f(x)Q(x)dx].$
- Hence, another way to write the DE is $\frac{d}{dx}[f(x)y] = \frac{d}{dx}[f(x)Q(x)dx]$.
- This shows that $f(x)y = \int f(x)Q(x)dx + C$, which means we have found the general solution (only need to divide by $f(x)$).
- Note that this solution exists on any interval on which P and Q are continuous. (This is better than what Theorem [11](#page--1-0) can predict.)

Example 24. Solve $x^2 y' = 1 - xy + 2x$, $y(1) = 3$.

Solution. Write as $\frac{dy}{dx} + P(x)y = Q(x)$ with $P(x) = \frac{1}{x}$ and $Q(x) = \frac{1}{x^2} + \frac{2}{x}$ $\frac{2}{x}$. Integrating factor $f(x) = e^{\ln x} = x$ (why do we write $\ln x$ instead of $\ln |x|$?). Hence, $xy = \int (\frac{1}{x})^{x} dx$ $(\frac{1}{x} + 2)dx = \ln x + 2x + C$. Using $y(1) = 3$, we find $C=1$. Solution $y=\frac{\ln(x)+2x+1}{x}$ $\frac{x}{x}$ $\left\langle \right\rangle$

. (Check!)