Sketch of Lecture 6

 ${\bf Review.}\ linear first-order equations$

Example 25. A tank contains 20gal of pure water. It is filled with brine (containing 2lb/gal salt) at a rate of 3gal/min. At the same time, well-mixed solution flows out at a rate of 2gal/min. How much salt is in the tank after t minutes?

Solution. volume (in gal) in tank after time t (in min): V(t) = 20 + (3-2)t = 20 + tamount of salt (in lb) in tank: x(t)concentration of salt (in lb/gal) in tank: $\frac{x(t)}{V(t)}$ In the time interval $[t, t + \Delta t]$, $\Delta x \approx 3 \cdot 2 \cdot \Delta t - 2 \cdot \frac{x(t)}{V(t)} \cdot \Delta t$. Hence, x solves the IVP $\frac{dx}{dt} = 6 - 2 \cdot \frac{x}{20+t}$, x(0) = 0. This is a linear DE! $\frac{dx}{dt} + \frac{2}{20+t}x = 6$. The integrating factor is $f(t) = e^{\int \frac{2}{20+t}dt} = (20+t)^2$. $(20+t)^2\frac{dx}{dt} + 2(20+t)x = \frac{d}{dt}[(20+t)^2x] = \frac{d}{dt}[\int 6(20+t)^2dt] = \frac{d}{dt}[2(20+t)^3]$ Hence, $(20+t)^2x = 2(20+t)^3 + C$. Using x(0) = 0, we find $C = -2 \cdot 20^3$. This means that, after t minutes, the tank contains $x(t) = 2(20+t) - \frac{2 \cdot 20^3}{(20+t)^2}$ pounds of salt.

As a consequence, we get that $x(t) \approx 2(20+t) = 2V(t)$ for large t. Why does that make perfect sense?!

Substitutions

Example 26. Solve $\frac{\mathrm{d}y}{\mathrm{d}x} = (x+y)^2$.

Solution. Set u = x + y. Then $\frac{du}{dx} = 1 + \frac{dy}{dx}$ and, hence, $\frac{du}{dx} - 1 = u^2$. This DE for u can be solved by separation of variables: $\frac{1}{1+u^2} du = dx$, $\arctan(u) = x + C$, $u = \tan(x + C)$. The solution of the original DE is $y = u - x = \tan(x + C) - x$.

Useful substitutions

Some important, easy-to-spot, cases:

- $y' = F\left(\frac{y}{x}\right)$. This is called a homogeneous equation. Set $u = \frac{y}{x}$. Then y = ux and $\frac{dy}{dx} = x \frac{du}{dx} + u$. We get $x \frac{du}{dx} + u = F(u)$. This is always separable.
- F(y'', y', x) = 0. 2nd order with "y missing". Set $u = y' = \frac{dy}{dx}$. Then $y'' = \frac{du}{dx}$. We get the first-order DE $F\left(\frac{du}{dx}, u, x\right) = 0$.
- F(y'', y', y) = 0. 2nd order with "x missing".

Set $u = y' = \frac{dy}{dx}$. Then $y'' = \frac{du}{dx} = \frac{du}{dy} \cdot \frac{dy}{dx} = \frac{du}{dy} \cdot u$. We get the first-order DE $F\left(u\frac{du}{dy}, u, y\right) = 0$. Examples follow next time... \diamond