Sketch of Lecture 7 Thu, 01/30/2014

Review. Useful substitutions \Diamond

Example 27. Solve $(x - y)y' = x + y$.

Solution. Divide the DE by x to get $\left(1-\frac{y}{x}\right)$ $\frac{y}{x}$) $y' = 1 + \frac{y}{x}$. This is a homogeneous equation! We therefore substitute $u = \frac{y}{x}$ $\frac{y}{x}$, to find the new DE $x u' + u = \frac{1+u}{1-u}$ $\frac{1+u}{1-u}$, $xu' = \frac{1+u^2}{1-u}$ $\frac{1+u}{1-u}.$ Separation of variable: $\frac{1-u}{1+u^2}du = \frac{1}{x}$ $\frac{1}{x}$ dx, arctan $(u) - \frac{1}{2}$ $\frac{1}{2}$ ln(1+u²) = ln |x| + C. Setting $u = y/x$, we get the (general) implicit solution arctan $(y/x) - \frac{1}{2}$ $\frac{1}{2} \ln(1 + (y/x)^2) = \ln|x| + C.$

Example 28. Solve $y'' = x - y'$.

Solution. Substitute $u = y'$. Then $u' = x - u$, which is linear with $u = x - 1 + Ce^{-x}$. Hence $y=\frac{1}{2}$ $\frac{1}{2}x^2 - x - Ce^{-x} + D.$

Example 29. Find a general solution to $y'' = 2yy'$.

Solution. We substitute $u = y' = \frac{dy}{dx}$ $\frac{dy}{dx}$. Then $y'' = \frac{du}{dx}$ $\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}y}$ $\frac{\mathrm{d}u}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}x}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}u}{\mathrm{d}y}$ $\frac{du}{dy}\cdot u.$ Therefore, our DE turns into $u \frac{du}{du}$ $\frac{du}{dy} = 2yu.$

Dividing by u, we get $\frac{du}{dy} = 2y$. [Note that we loose the solution $u = 0$, which gives the singular solution $y = C$.] Hence, $u = y^2 + C$. It remains to solve $y' = y^2 + C$. This is a separable DE.

 $\frac{1}{C+y^2}$ dy = dx. Let us restrict to $C = D^2 \geqslant 0$ here. (This means we will only find "half" of the solutions.)

$$
\int \frac{1}{D^2 + y^2} dy = \frac{1}{D^2} \int \frac{1}{1 + (y/D)^2} dy = \frac{1}{D} \arctan (y/D) = x + A.
$$

Solving for y, we find $y = D \tan (Dx + AD) = D \tan (Dx + B).$ $[B = AD]$

Some more applications

Acceleration–velocity models

We consider a falling object, and let $y(t)$ be its height at time t.

If we only take earth's gravitation into account, then the fall is modelled by $y''(t) = -g$.

For many applications, one needs to take air resistance into account.

This is actually less well understood than one might think. Reasonable physical assumptions imply that the r esistance is proportional to the square of the velocity 4 . However, for "relatively slowly" falling objects one might empirically observe that the resistance is proportional to the velocity itself⁵. Or anything in between...

Example 30. If air resistance is proportional to velocity, then $y''(t) = -\rho y'(t) - g$. Solve this equation with initial conditions $y(0) = y_0, y'$ $(0) = v_0.$ [Note that $-\rho y' > 0$ because $y' < 0.$]

Solution. Set $v = y'$, get $v' + \rho v = -g$ (linear!). Integrating factor $e^{\rho t}$. $e^{\rho t}v = \int -g e^{\rho t} dt = -g/\rho e^{\rho t} + C$. $v(0) = y'(0) = v_0$ implies $C = v_0 + g/\rho$. Hence, $v(t) = (v_0 + g/\rho)e^{-\rho t} - g/\rho$.

$$
y(t) = \int v(t)dt = ... = -(v_0/\rho + g/\rho^2)(e^{-\rho t} - 1) - gt/\rho + y_0
$$
, where we used that $y(0) = y_0$.

Note that $\lim_{t\to\infty}v(t) = -g/\rho$. Terminal speed g/ρ . (Important for idea behind a parachute!) \diamondsuit

[^{4.}](#page-0-0) A simplistic way to think about this is to imagine the falling ob ject to bump into (air) particles; if the ob ject falls twice as fast, then the momentum of the particles it bumps into is twice as large and it bumps into twice as many of them.

[^{5.}](#page-0-1) Maybe it helps to imagine that, at slow speed, the falling ob ject doesn't exactly bump into particles but instead just gently pushes them aside; so that at twice the speed it only needs to gently push twice as often.