Sketch of Lecture 13 Tue, 02/11/2014

Review. linear independence \diamondsuit

Fix some $a \in I$. Note that $y(x) = C_1y_1(x) + \ldots + C_ny_n(x)$ is the general solution of a HLDE⁸ of order *n* if and only if we can solve for all initial values $y(a) = b_0$, $y'(a) = b_1$, ..., $y^{(n-1)}(a) = b_{n-1}$.

Writing out these (linear) equations and expressing them in matrix form, we see that they are equivalent to finding (C_1, C_2, \ldots, C_n) such that

$$
\begin{pmatrix}\ny_1(a) & y_2(a) & \cdots & y_n(a) \\
y'_1(a) & y'_2(a) & \cdots & y'_n(a) \\
\vdots & \vdots & & \vdots \\
y_1^{(n-1)}(a) & y_2^{(n-1)}(a) & \cdots & y_n^{(n-1)}(a)\n\end{pmatrix}\n\begin{pmatrix}\nC_1 \\
C_2 \\
\vdots \\
C_n\n\end{pmatrix}\n=\n\begin{pmatrix}\nb_0 \\
b_1 \\
\vdots \\
b_{n-1}\n\end{pmatrix}.
$$

Linear Algebra⁹ tells us that this system of linear equations can be solved for all values of the b_j if and only if the determinant of the matrix on the LHS is not zero. This determinant is the Wronskian $W(a)$ of y_1, \ldots, y_n .

Definition 58. The Wronskian of the *n* functions $f_1, ..., f_n$ is the $n \times n$ determinant

$$
W(x) := \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}.
$$

Note that, for linearly dependent functions, $W(x) = 0$ for all x. Why?!

Theorem 59. Solutions $y_1, ..., y_n$ of a homogeneous linear DE of order n are linearly independent if and only if $W(x) \neq 0$ for some $x \in I$. 0 for some $x \in I$. [in which case $W(x) \neq 0$ for all $x \in I$]

Example 60. $y'' + 4y' + 4y = 0$ has solutions $y_1 = e^{-2x}$, $y_2 = xe^{-2x}$. The Wronskian is | e^{-2x} $x e^{-2x}$ $-2e^{-2x}$ $(1-2x)e^{-2x}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array} \end{array} \end{array}$ $= e^{-2x}(1-2x)e^{-2x} - (-2e^{-2x})xe^{-2x} = e^{-4x}[1-2x+2x] = e^{-4x} \neq 0.$ Hence, y_1 , y_2 are independent and the general solution is $y(x) = Ay_1(x) + By_2(x)$.

Example 61. $y''' = 0$ has solutions $y_1 = 3$, $y_2 = 1 - 2x^2$, $y_3 = 5x^2$. Are these independent? **Solution.** No, because $y_1 - 3y_2 - \frac{6}{5}$ $\frac{6}{5}y_3 = 0.$

Solution. No, because $W(0) =$ 3 1 0 0 0 0 $0 -4 10$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array} \end{array}$ $= 0.$ [evaluating the Wronskian at 0 makes our computation easy!]

What about the solutions $y_1 = 3$, $y_2 = 1 - 2x^2$, $y_3 = 5x$. Are they independent?

Solution. Yes, because
$$
W(0) = \begin{vmatrix} 3 & 1 & 0 \\ 0 & 0 & 5 \\ 0 & -4 & 0 \end{vmatrix} = 60.
$$

Remark. JFF¹⁰. The Riemann zeta function is defined by the sum $\zeta(s) = \sum_{n=1}^{\infty}$ ∞ 1 $\frac{1}{n^s}$, which converges if Re $s > 1$. For other complex values of s, there is a unique way to "analytically" continue" this function. It is then "easy" to see that $\zeta(-2) = 0$, $\zeta(-4) = 0$, The Riemann hypothesis claims that all other zeroes of $\zeta(s)$ lie on the line $\text{Re}(s) = \frac{1}{2}$. A proof of this conjecture (checked for the first 10,000,000,000 zeroes) is worth¹¹ \$1,000,000.

[^{8.}](#page-0-0) Writing the DE as $y^{(n)} + p_{n-1}(x) y^{(n-1)} + ... + p_1(x) y' + p_0(x) y = 0$, we need the coefficients $p_j(x)$ to be at least continuous on the interval I.

[^{9.}](#page-0-1) Don't worry if you are not familiar with this, as we will go over basics of Linear Algebra when we really need it. However, it may be a good idea to start reading up on matrices and vectors because we will be brief.

[^{10.}](#page-0-2) Just for fun.

[^{11.}](#page-0-3) http://www.claymath.org/millenium-problems/riemann-hypothesis