Review

- Basic understanding
 - \circ DEs and IVPs
 - \circ existence and uniqueness
 - \circ $\,$ visualization of first-order DEs via slope fields
- Basic modeling
 - population models
 - \circ modeling simple motions
 - \circ mixing problems
- Solving techniques
 - \circ linear DEs with constant coefficients
 - separation of variables (y' = f(x)g(y))
 - linear first-order equations (integrating factor)
 - common substitutions (e.g. y' = f(y/x))

Example 62. What can we say about existence and uniqueness of the initial value problem $\frac{dy}{dx} = \ln(x^2 + y^2) - \frac{\cos(y^3)}{x}, y(1) = 0$?

Solution. Write as y' = f(x, y) with $f(x, y) = \ln (x^2 + y^2) - \frac{\cos (y^3)}{x}$. Then $\frac{\partial}{\partial y} f(x, y) = \frac{2y}{x^2 + y^2} + \frac{3y^2 \sin (y^3)}{x}$. We observe that both f(x, y) and $\frac{\partial}{\partial y} f(x, y)$ are continuous for all (x, y) with $x \neq 0$. In particular, f(x, y) and $\frac{\partial}{\partial y} f(x, y)$ are continuous around (1, 0). Consequently, the IVP has a solution and it is unique.

Example 63. $x^2(2y^3-y)\frac{\mathrm{d}y}{\mathrm{d}x} = xy^5 - y^5$

Solution. This equation is separable! (Note that $xy^5 - y^5 = y^5(x-1)$.)

Example 64. $xy' = 4x^4 - (2x - 3)y$

Solution. This equation is linear! Write as $y' + \frac{2x-3}{x}y = 4x^3$, determine integrating factor, ...

Example 65.
$$\frac{dy}{dx} = \frac{xy + \sec^2(x)\cos(y) + x\cos(y) + y\sec^2(x)}{1 - \sin(y)}$$

Solution. This equation is separable! $\frac{dy}{dx} = \frac{(x + \sec^2(x))(y + \cos(y))}{1 - \sin(y)}$