Sketch of Lecture 16

Review. solving nonhomogeneous linear DEs with constant coefficients

Example 70. Find a particular solution of $y'' + 4y' + 4y = 7e^{-2x}$.

Solution. Again, $L = D^2 + 4D + 4 = (D+2)^2$.

"Old" roots -2, -2. "New" roots -2. Hence, there has to be a particular solution of the form $y_p = Cx^2e^{-2x}$. To find the value of C, we need to plug into the DE.

$$\begin{split} y_p' &= C(-2x^2 + 2x)e^{-2x} \\ y_p'' &= C(4x^2 - 8x + 2)e^{-2x} \\ y_p'' &+ 4y_p' + 4y_p = 2Ce^{-2x} \stackrel{!}{=} 7e^{-2x}. \ C &= 7/2. \\ \text{Hence, } y_p &= \frac{7}{2}x^2e^{-2x}. \ \text{(Last time, we didn't finish the computation.)} \end{split}$$

Example 71. Find a particular solution of $y'' + 4y' + 4y = x \cos(x)$.

Solution. "Old" roots -2, -2. "New" roots $\pm i, \pm i$. Hence, there has to be a particular solution of the form $y_p = (C_1 + C_2 x)\cos(x) + (C_3 + C_4 x)\sin(x)$. To find the value of the C_j 's, we need to plug into the DE. $y'_p = (C_2 + C_3 + C_4 x)\cos(x) + (C_4 - C_1 - C_2 x)\sin(x)$ $y''_p = (2C_4 - C_1 - C_2 x)\cos(x) + (-2C_2 - C_3 - C_4 x)\sin(x)$ $y''_p + 4y'_p + 4y_p = (3C_1 + 4C_2 + 4C_3 + 2C_4 + (3C_2 + 4C_4)x)\cos(x)$ $+ (-4C_1 - 2C_2 + 3C_3 + 4C_4 + (-4C_2 + 3C_4)x)\sin(x) \stackrel{!}{=} x\cos(x)$. Equating the coefficients of $\cos(x), x\cos(x), \sin(x), x\sin(x)$, we get the equations $3C_1 + 4C_2 + 4C_3 + 2C_4 = 0$, $3C_2 + 4C_4 = 1, -4C_1 - 2C_2 + 3C_3 + 4C_4 = 0, -4C_2 + 3C_4 = 0$. Solving, we find $C_1 = -\frac{4}{125}, C_2 = \frac{3}{25}, C_3 = -\frac{22}{125}, C_4 = \frac{4}{25}$. [Make sure you know how to do this tedious step.] Hence, $y_p = \left(-\frac{4}{125} + \frac{3}{25}x\right)\cos(x) + \left(-\frac{22}{125} + \frac{4}{25}x\right)\sin(x)$.

Example 72. Find a particular solution of $y'' + 4y' + 4y = 5e^{-2x} - 3x\cos(x)$.

Solution. Instead of starting all over, recall that we already found y_{Δ} in Example 70 such that $Ly_{\Delta} = 7e^{-2x}$. Also, from Example 71 we have y_{\diamond} such that $Ly_{\diamond} = x \cos(x)$.

By linearity, it follows that
$$L\left(\frac{5}{7}y_{\Delta} - 3y_{\diamond}\right) = \frac{5}{7}Ly_{\Delta} - 3Ly_{\diamond} = 5e^{-2x} - 3x\cos(x).$$

Hence, $y_p = \frac{5}{7}y_{\Delta} - 3y_{\diamond} = \frac{5}{2}x^2e^{-2x} - 3\left[\left(-\frac{4}{125} + \frac{3}{25}x\right)\cos(x) + \left(-\frac{22}{125} + \frac{4}{25}x\right)\sin(x)\right].$

Example 73. Find a particular solution of $y'' + 4y' + 4y = 4e^{3x}\sin(2x) - x\sin(x)$.

Solution. "Old" roots -2, -2. "New" roots $3 \pm 2i, \pm i, \pm i$.

Hence, there has to be a particular solution of the form

 $y_p = C_1 e^{3x} \cos(2x) + C_2 e^{3x} \sin(2x) + (C_3 + C_4 x) \cos(x) + (C_5 + C_6 x) \sin(x).$

To find the values of $C_1, ..., C_6$, we plug into the DE. But this final step is so boring that we stop here.

Computers (currently?) cannot afford to be as selective; mine obediently calculated:

$$y_p = -\frac{4}{841}e^{3x}(20\cos(2x) - 21\sin(2x)) + \frac{1}{125}((-22 + 20x)\cos(x) + (4 - 15x)\sin(x))$$

 \diamond

 \diamond