Sketch of Lecture 17

Theorem 74. The linear DE Ly = y'' + P(x)y' + Q(x)y = f(x) has particular solution

$$y_p = -y_1(x) \int \frac{y_2(x)f(x)}{W(x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W(x)} dx,$$

where y_1, y_2 are independent solutions of Ly = 0 and $W = y_1y_2' - y_1'y_2$ is the Wronskian of y_1, y_2 . Note that considering all possible constants of integration actually gives the general solution of Ly = f(x).

Proof. Let us look for $y_p = u_1(x) y_1(x) + u_2(x) y_2(x)$. This "ansatz" is called variation of constants/parameters. Then $y'_p = \underbrace{u'_1y_1 + u'_2y_2}_{= 0 \text{ (or so we wish)}} + u_1y'_1 + u_2y'_2 \text{ and } y''_p = u'_1y'_1 + u'_2y'_2 + u_1y''_1 + u_2y''_2.$

$$\begin{split} Ly_p &= u_1'y_1' + u_2'y_2' + u_1y_1'' + u_2y_2'' + P(x)(u_1y_1' + u_2y_2') + Q(x)(u_1y_1 + u_2y_2) \\ &= u_1'y_1' + u_2'y_2' + u_1Ly_1 + u_2Ly_2 = u_1'y_1' + u_2'y_2' \end{split}$$
So, in order for $y_p = u_1y_1 + u_2y_2$ to solve Ly = f(x), we need

$$u_1'y_1 + u_2'y_2 = 0, u_1'y_1' + u_2'y_2' = f(x).$$

These are linear equations in u'_1 and u'_2 . Solving gives $u'_1 = \frac{-y_2 f(x)}{y_1 y'_2 - y'_1 y_2}$ and $u'_2 = \frac{y_1 f(x)}{y_1 y'_2 - y'_1 y_2}$, and it only remains to integrate.

Example 75. Find a particular solution of $y'' - 2y' + y = \frac{e^x}{r}$.

Solution. Here, $y_1 = e^x$, $y_2 = x e^x$. We calculate $W(x) = e^{2x}$.

 $y_p = -e^x \int 1 dx + x e^x \int \frac{1}{x} dx = x e^x [\ln |x| - 1].$ (Note that, with integration constants, we get $-e^x (x + C_1) + x e^x (\ln |x| + C_2)$, which is the general solution. So any constants suffice to give us a particular solution.) \diamondsuit

Example 76. Solve $Ly = x^2y'' - 4xy' + 6y = x^3$. Given: $y_1 = x^2$ and $y_2 = x^3$ solve Ly = 0.

Solution. First, $W(x) = x^4$. Put DE in the form $y'' - 4x^{-1}y' + 6x^{-2}y = x$.

$$y_p = -y_1(x) \int \frac{y_2(x)f(x)}{W(x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W(x)} dx = -x^2 \int 1 dx + x^3 \int \frac{1}{x} dx = -x^3 + x^3 \ln|x|.$$

the general solution is $C_1 x^2 + (C_2 + \ln|x|)x^3.$

Hence, the general solution is $C_1 x^2 + (C_2 + \ln |x|) x^3$.

Remark 77. Just for fun (and understanding and context), let us revisit our method of solving first-order linear DEs Ly = y' + P(x)y = f(x). [Variation of constants also extends to higher-order DEs.] Note that Ly = 0 has solution $y_1 = \exp(-\int P(x) dx)$, which is nothing but the inverse of the integrating factor! Using the integrating factor, we arrive at $y_p(x) = y_1(x) \int \frac{f(x)}{y_1(x)} dx$ which is the analog of Theorem 74. \diamond

Application: motion of a pendulum

The motion of an (ideal) pendulum is described by $\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin\theta = 0$, where θ is the angular displacement and L is the length of the pendulum (and, as usual, g is acceleration due to gravity).

Proof. We assume the string to be massless, and let m be the swinging mass. Let s and h be as in the picture on the right. Velocity (more accurately, speed) of mass: $v = \frac{ds}{dt} = L \frac{d\theta}{dt}$ Kinetic energy: $T = \frac{1}{2}mv^2 = \frac{1}{2}mL^2\left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2$ Potential energy: $V = mgh = mgL(1 - \cos\theta)$ (weight mg times height h) Conservation of energy: T + V = constTake time derivative: $\frac{1}{2}mL^2 2\frac{d\theta}{dt}\frac{d^2\theta}{dt^2} + mgL\sin\theta\frac{d\theta}{dt} = 0$. Finally, cancel terms.

 \square