Sketch of Lecture 17 Wed, 02/19/2014

Theorem 74. The linear DE $Ly = y'' + P(x)y' + Q(x)y = f(x)$ has particular solution

$$
y_p = -y_1(x) \int \frac{y_2(x)f(x)}{W(x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W(x)} dx,
$$

where y_1, y_2 are independent solutions of $Ly = 0$ and $W = y_1 y_2' - y_1' y_2$ is the Wronskian of y_1, y_2 . [Note that considering all possible constants of integration actually gives the general solution of $Ly = f(x)$.]

Proof. Let us look for $y_p = u_1(x) y_1(x) + u_2(x) y_2(x)$. This "ansatz" is called variation of constants/parameters. Then $y'_p = u'_1y_1 + u'_2y_2$ $+ u_1 y_1' + u_2 y_2'$ and $y_p'' = u_1' y_1' + u_2' y_2' + u_1 y_1'' + u_2 y_2''$.

 $=0$ (or so we wish) $L y_p = u_1' y_1' + u_2' y_2' + u_1 y_1'' + u_2 y_2'' + P(x)(u_1 y_1' + u_2 y_2') + Q(x)(u_1 y_1 + u_2 y_2)$ $= u'_1y'_1 + u'_2y'_2 + u_1Ly_1 + u_2Ly_2 = u'_1y'_1 + u'_2y'_2$ So, in order for $y_p = u_1y_1 + u_2y_2$ to solve $Ly = f(x)$, we need

$$
u'_1y_1 + u'_2y_2 = 0,
$$

$$
u'_1y'_1 + u'_2y'_2 = f(x).
$$

These are linear equations in u'_1 and u'_2 . Solving gives $u'_1 = \frac{-y_2 f(x)}{y_1 y'_2 - y'_1 y_1}$ $\frac{-y_2 f(x)}{y_1 y_2' - y_1' y_2}$ and $u_2' = \frac{y_1 f(x)}{y_1 y_2' - y_1'}$ $\frac{y_1 y_1(x)}{y_1 y_2' - y_1' y_2}$, and it only remains to integrate. \Box

Example 75. Find a particular solution of $y'' - 2y' + y = \frac{e^x}{x}$ $\frac{y}{x}$.

Solution. Here, $y_1 = e^x$, $y_2 = xe^x$. We calculate $W(x) = e^{2x}$. $y_p = -e^x \int 1 \mathrm{d}x + xe^x \int \frac{1}{x} \mathrm{d}x = xe^x \left[\ln|x| - 1 \right]$. (Note that, with integration constants, we get $-e^x(x+C_1) +$ $xe^{x}(\ln |x| + C_2)$, which is the general solution. So any constants suffice to give us a particular solution.) \diamondsuit

Example 76. Solve $Ly = x^2y'' - 4xy' + 6y = x^3$. Given: $y_1 = x^2$ and $y_2 = x^3$ solve $Ly = 0$.

Solution. First, $W(x) = x^4$. Put DE in the form $y'' - 4x^{-1}y' + 6x^{-2}y = x$.

$$
y_p = -y_1(x) \int \frac{y_2(x)f(x)}{W(x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W(x)} dx = -x^2 \int 1 dx + x^3 \int \frac{1}{x} dx = -x^3 + x^3 \ln|x|.
$$

the general solution is $C_1x^2 + (C_2 + \ln|x|)x^3$.

Hence, the general solution is $C_1x^2 + (C_2 + \ln |x|)x^3$

Remark 77. Just for fun (and understanding and context), let us revisit our method of solving first-order linear DEs $Ly = y' + P(x)y = f(x)$. [Variation of constants also extends to higher-order DEs.] Note that $Ly = 0$ has solution $y_1 = \exp(-\int P(x)dx)$, which is nothing but the inverse of the integrating factor! Using the integrating factor, we arrive at $y_p(x) = y_1(x) \int \frac{f(x)}{y_1(x)} dx$ which is the analog of Theorem [74.](#page-0-0) \diamond

Application: motion of a pendulum

The motion of an (ideal) pendulum is described by $\frac{d^2\theta}{dt^2}$ $\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + \frac{g}{L}$ $\frac{g}{L}$ sin $\theta = 0$, where θ is the angular displacement and L is the length of the pendulum (and, as usual, g is acceleration due to gravity).

Proof. We assume the string to be massless, and let m be the swinging mass. Let s and h be as in the picture on the right. Velocity (more accurately, speed) of mass: $v = \frac{ds}{dt}$ $\frac{\mathrm{d}s}{\mathrm{d}t} = L \frac{\mathrm{d}\theta}{\mathrm{d}t}$ $\mathrm{d}t$ Kinetic energy: $T = \frac{1}{2}mv^2 = \frac{1}{2}mL^2\left(\frac{d\theta}{dt}\right)$ $\frac{\mathrm{d}\theta}{\mathrm{d}t}$ $\Big)^2$ Potential energy: $V = mgh = mgL(1 - \cos\theta)$ (weight mg times height h) Conservation of energy: $T + V =$ const Take time derivative: $\frac{1}{2}mL^2 2\frac{d\theta}{dt}$ $_{\rm dt}$ $d^2\theta$ $\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2} + mgL\sin\theta\frac{\mathrm{d}\theta}{\mathrm{d}t}$ $\frac{d\theta}{dt} = 0$. Finally, cancel terms. \Box

