Sketch of Lecture 23

Review. properties of determinants

The determinant of any matrix can be computed by picking a row *i* and calculating det $(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} \det(A_{[i,j]})$, where $A_{[i,j]}$ is obtained from *A* by deleting the *i*th row and *j*th column.

The determinant satisfies det $(A^T) = \det(A)$ (as a consequence, we can adjust the above formula to expand along columns instead of along a row) and det $(AB) = \det(A)\det(B)$.

Example 101. det
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$$

Vectors $\boldsymbol{x}_1, ..., \boldsymbol{x}_n$ are (linearly) independent if $c_1\boldsymbol{x}_1 + ... + c_n\boldsymbol{x}_n = 0$ only for $c_1 = c_2 = ... = c_n = 0$. When checking independence of n many $n \times 1$ column vectors, we can use determinants! They are independent if and only if det $(\boldsymbol{x}_1 \ \boldsymbol{x}_2 \ ... \ \boldsymbol{x}_n) \neq 0$. [Do you see why?!]

Example 102. Are the vectors $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ independent?

Solution. det $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = -3 \neq 0$. Hence the vectors are independent.

Example 103. Are the vectors $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$, $\begin{pmatrix} 2\\2\\4 \end{pmatrix}$, $\begin{pmatrix} 1\\-1\\0 \end{pmatrix}$ independent?

Solution. det $\begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 1 & 4 & 0 \end{pmatrix} = 2 \det \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} - (-1) \det \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix} = -2 + 2 = 0$. Hence the vectors are dependent.

Solution.
$$4 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 0$$
. So, by definition, they are dependent.

Review. We took another look at Theorem 59 from Lecture 13 to convince ourselves that it follows from what we just learned about determinants. \diamond

Example 104. x'' - x' - 2x = 0 has solutions $x_1 = e^{2t}$, $x_2 = e^{-t}$. Since $W(t) = \det \begin{pmatrix} e^{2t} & e^{-t} \\ 2e^{2t} & -e^{-t} \end{pmatrix}$ and so $W(0) = \det \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} = -3 \neq 0$, our two solutions are indeed independent. As a consequence, the general solution is $c_1x_1 + c_2x_2$.

Example 105. Introducing y = x', the previous DE is equivalent to the first-order system x' = y, y' = 2x + y. Our known solutions translate into $x_1 = e^{2t}, y_1 = 2e^{2t}$ and $x_2 = e^{-t}, y_2 = -e^{-t}$. Writing $\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}$, this system is $\boldsymbol{x}' = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} \boldsymbol{x}$ with solutions $\boldsymbol{x}_1 = \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix}, \boldsymbol{x}_2 = \begin{pmatrix} e^{-t} \\ -e^{-t} \end{pmatrix}$. For fixed t, these two vectors are independent if and only if $\det(\boldsymbol{x}_1 \ \boldsymbol{x}_2) = \det\begin{pmatrix} e^{2t} & e^{-t} \\ 2e^{2t} & -e^{-t} \end{pmatrix} \neq 0$.

Note that this is precisely the Wronskian of the previous example.

As in this last example, if $x_1, x_2, ..., x_n$ are solutions to x' = A(t) x (a homogeneous linear firstorder system of DEs), then their Wronskian is the determinant $W(t) = \det(x_1, x_2, ..., x_n)$. Next time, we will see the expected properties it again has.

 \diamond

 \diamond