Sketch of Lecture 23 Mon, 03/03/2014

Review. properties of determinants \Diamond

 $\sum_{j=1}^n$ The determinant of any matrix can be computed by picking a row i and calculating det (A) $\sum_{j=1}^n (-1)^{i+j} a_{ij} \text{det}(A_{[i,j]}),$ where $A_{[i,j]}$ is obtained from A by deleting the *i*th row and *j*th column.

The determinant satisfies det (A^T) = det (A) (as a consequence, we can adjust the above formula to expand along columns instead of along a row) and det $(AB) = det (A)det(B)$.

Example 101.
$$
\det\begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc
$$

Vectors $x_1, ..., x_n$ are (linearly) independent if $c_1x_1 + ... + c_nx_n = 0$ only for $c_1 = c_2 = ... = c_n = 0$. When checking independence of n many $n \times 1$ column vectors, we can use determinants! They are independent if and only if det (x_1, x_2, \ldots, x_n) $\neq 0$. [Do you see why?!]

Example 102. Are the vectors $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 2 $\Big), \ \Big(\begin{array}{c} 2 \\ 1 \end{array}\Big)$ 1 independent?

Solution. det $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = -3 \neq 0$. Hence the vectors are independent.

Example 103. Are the vectors $\sqrt{ }$ $\overline{1}$ 1 0 1 \setminus $\Big\}$ $\sqrt{ }$ $\overline{1}$ 2 2 4 \setminus $\Big\}$ $\sqrt{ }$ $\overline{1}$ 1 −1 0 \setminus independent?

Solution. det \mathcal{L} 1 2 1 $\begin{array}{ccc} 0 & 2 & -1 \\ 1 & 4 & 0 \end{array}$ $= 2det\left(\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right) - (-1)det\left(\begin{array}{cc} 1 & 2 \\ 1 & 4 \end{array}\right) = -2 + 2 = 0.$ Hence the vectors are dependent.

Solution.
$$
4\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} - 2\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = 0
$$
. So, by definition, they are dependent.

Review. We took another look at Theorem [59](#page--1-0) from Lecture 13 to convince ourselves that it follows from what we just learned about determinants. \Diamond

Example 104. $x'' - x' - 2x = 0$ has solutions $x_1 = e^{2t}$, $x_2 = e^{-t}$. Since $W(t) = det \begin{pmatrix} e^{2t} & e^{-t} \ e^{2t} & e^{-t} \end{pmatrix}$ $2e^{2t} - e^{-t}$ and so $W(0) = \det \begin{pmatrix} 1 & 1 \\ 2 & 1 \end{pmatrix}$ 2 −1 $=$ -3 \neq 0, our two solutions are indeed independent. As a consequence, the general solution is $c_1x_1 + c_2x_2$.

Example 105. Introducing $y = x'$, the previous DE is equivalent to the first-order system $x'=y, y'=2x+y$. Our known solutions translate into $x_1=e^{2t}, y_1=2e^{2t}$ and $x_2=e^{-t}, y_2=-e^{-t}$. Writing $\boldsymbol{x} = \begin{pmatrix} x \\ y \end{pmatrix}$ \overline{y}), this system is $x' = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} x$ with solutions $x_1 = \begin{pmatrix} e^{2t} \\ 2e^{2t} \end{pmatrix}$ $2e^{2t}$ $\left|,\mathbf{x}_2=\right| \left| \begin{array}{c} e^{-t} \ e^{-t} \end{array}\right|$ $-e^{-t}$! .

For fixed t, these two vectors are independent if and only if det (x_1, x_2) = det $\begin{pmatrix} e^{2t} & e^{-t} \\ 2e^{2t} & e^{-t} \end{pmatrix}$ $2e^{2t} - e^{-t}$ $\Big) \neq 0.$ Note that this is precisely the Wronskian of the previous example.

As in this last example, if $x_1, x_2, ..., x_n$ are solutions to $x' = A(t)x$ (a homogeneous linear firstorder system of DEs), then their Wronskian is the determinant $W(t) = det(x_1, x_2, \ldots, x_n)$. Next time, we will see the expected properties it again has.