Sketch of Lecture 24 Tue, 03/04/2014

Theorem 106. Let $x_1, x_2, ..., x_n$ be solutions of $x' = A(t)x$. $A(t)$ is $n \times n$, entries continuous on I.

 $c_1x_1 + c_2x_2 + \ldots + c_nx_n$ is the general solution

- \Leftrightarrow $x_1, x_2, ..., x_n$ are independent
- \iff the Wronskian $W(t) = \det (x_1 \ x_2 \ \dots \ x_n) \neq 0$ for $t \in I$ of our choice

Moreover, such solutions always exist (on all of I).

Example 107. $x''' - 6x'' + 11x' - 6x = 0$ has solutions $x_1 = e^t$, $x_2 = e^{2t}$, $x_3 = e^{3t}$.

$$
W(t) = \det \begin{pmatrix} e^t & e^{2t} & e^{3t} \\ e^t & 2e^{2t} & 3e^{3t} \\ e^t & 4e^{2t} & 9e^{3t} \end{pmatrix}, W(0) = \det \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 4 & 9 \end{pmatrix} = \det \begin{pmatrix} 2 & 3 \\ 4 & 9 \end{pmatrix} - \det \begin{pmatrix} 1 & 3 \\ 1 & 9 \end{pmatrix} + \det \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix} = 2 \neq 0.
$$

This certifies¹⁵ that our three solutions are indeed independent. As a consequence, the general solution is $c_1x_1 + c_2x_2 + c_3x_3$.

Example 108. Introducing $y = x'$ and $z = x''$, the previous DE is equivalent to the first-order system $x'=y$, $y'=z$, $z'=6x-11y+6z$. Writing $\boldsymbol{x}=(x, y, z)^T$, this system can be expressed as

$$
\boldsymbol{x}' = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{array}\right) \boldsymbol{x}.
$$

The solutions from the previous example translate into $x_1 =$ $\sqrt{ }$ $\overline{\mathcal{L}}$ e^t e^t e^t \setminus $\Big\}, x_2 =$ $\sqrt{ }$ $\overline{\mathcal{L}}$ e^{2t} $2e^{2t}$ $4e^{2t}$). $\Big\}, x_3 =$ $\sqrt{ }$ $\overline{\mathcal{L}}$ e^{3t} $3e^{3t}$ $9e^{3t}$ \setminus \cdot

The Wronskian is $W(t) = \det (x_1, x_2, x_3) = \det$ $\sqrt{ }$ $\overline{ }$ e^t e^{2t} e^{3t} e^t $2e^{2t}$ $3e^{3t}$ e^{t} 4 e^{2t} 9 e^{3t} \. . Exactly as before!

We again conclude that x_1,x_2,x_3 are independent. The general solution is $c_1x_1+c_2x_2+c_3x_3$. \diamondsuit

Example 109. Solve the initial value problem $x' = \left(\frac{1}{x}\right)^{x}$ \mathcal{L} 0 1 0 0 0 1 6 −11 6 \setminus $\left|\boldsymbol{x},\,\boldsymbol{x}(0)\right|$ $\sqrt{ }$ $\overline{1}$ -2 −1 3 \setminus \cdot

Solution. From above, we know that the general solution is $x = c_1$ $\sqrt{2}$ \cdot e^t e^t e^t \setminus $+$ c_2 $\sqrt{ }$ \mathcal{C} e^{2t} $2e^{2t}$ $4e^{2t}$ \setminus $+ c_3$ $\sqrt{ }$ \mathcal{F} e^{3t} $3e^{3t}$ $9e^{3t}$ \setminus **Solution.** From above, we know that the general solution is $\mathbf{x} = c_1 \begin{pmatrix} e^t \\ e^t \end{pmatrix} + c_2 \begin{pmatrix} 2e^{2t} \\ 4e^{2t} \end{pmatrix} + c_3 \begin{pmatrix} 3e^{3t} \\ 9e^{3t} \end{pmatrix} =$ e^t $2e^{2t}$ $3e^{3t}$ $\left. \begin{array}{ccc} e^t & 2e^{2t} & 3e^{3t} \ e^t & 4e^{2t} & 9e^{3t} \end{array} \right| \left. \begin{array}{c} c_2 \ c_3 \end{array} \right.$ $\begin{pmatrix} c_2 \\ c_3 \end{pmatrix}$. The matrix ($\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{x}_3$) is called a fundamental matrix. .

In order to solve the IVP, we have to solve $\left(\begin{array}{c} 1 & \cdots & 1 \\ 0 & \cdots & 0 \end{array} \right)$ $\overline{1}$ 1 1 1 1 2 3 1 4 9 \setminus \mathbf{I} $\sqrt{2}$ \mathcal{L} c_1 $c₂$ c_3 $=$ $($ $\overline{1}$ $^{-2}$ $\frac{-1}{3}$

$$
\begin{array}{ccc|c}\n1 & 1 & 1 & -2 \\
1 & 2 & 3 & -1 \\
1 & 4 & 9 & 3\n\end{array} \implies \begin{array}{ccc|c}\n1 & 1 & 1 & -2 \\
0 & 1 & 2 & 1 \\
0 & 3 & 8 & 5\n\end{array} \implies \begin{array}{ccc|c}\n1 & 1 & 1 & -2 \\
0 & 1 & 2 & 1 \\
0 & 0 & 2 & 2\n\end{array} \implies c_3 = 1, c_2 = -1, c_1 = -2
$$

Hence, the solution to the IVP is $\boldsymbol{x}(t) = -2$ $\sqrt{2}$ \mathcal{L} e^t e^t e^t \setminus − $\sqrt{2}$ $\overline{ }$ e^{2t} $2e^{2t}$ $4e^{2t}$ \setminus $+$ $\sqrt{2}$ $\overline{ }$ e^{3t} $3e^{3t}$ $9e^{3t}$ \setminus $\Big\} =$ $\sqrt{2}$ $\overline{ }$ $-2e^{t} - e^{2t} + e^{3t}$ $-2e^{t} - 2e^{2t} + 3e^{3t}$ $-2e^t - 4e^{2t} + 9e^{3t}$ Y. \parallel .

We now turn to actually solving systems $\boldsymbol{x}' = A\boldsymbol{x}$ where A is a $n \times n$ matrix with constant entries. Looking back at our examples so far, it makes sense to look for solutions of the form $\bm{x}(t)\!=\!\bm{v}e^{\lambda t}$ with \bm{v} a vector which does not depend on t. Plugging into the DE, we get $\mathbf{x}' = \mathbf{v}\lambda e^{\lambda t} = Ae^{\lambda t}\mathbf{v}$. Cancelling the exponentials, we see that we have a solution if and only if $A\mathbf{v} = \lambda \mathbf{v}$.

For those familiar with the language of Linear Algebra this means that v is an eigenvector of A with eigenvalue λ .

[^{15.}](#page-0-0) Though we do know *a priori* that our method of solving HLDEs with constant coefficients will always produce independent solutions. It is good to see that the Wronskian agrees; it has to.