
Sketch of Lecture 25 Wed, 03/05/2014

Review. solutions to the sytem discussed last time ♦

In order to solve x′=Ax, we look for solutions x(t)=veλt.

Plugging into the DE, we get x′=vλeλt�
!
Aeλtv. Cancelling the exponentials, we see that we have a solution

if and only if Av=λv.

Definition 110. If Av= λv, for v � 0, then v is an eigenvector of A with eigenvalue λ.

In order to find these, note that Av=λv=λIv is equivalent to (A−λI)v=0. By the properties of determinants,
this is only possible if det (A−λI)=0. This determinant is a polynomial in λ, the characteristic polynomial of
A. Its roots are the eigenvalues λ.
For a specific eigenvalue λ, we then solve (A−λI)v=0 to find the eigenvector(s) v.

Example 111. Find the general solution of x′=
(

4 2
−3 −1

)

x.

Solution. The characteristic polynomial is

det

[(

4 2
−3 −1

)

− λ

(

1 0
0 1

)]

= det

(

4−λ 2
−3 −1− λ

)

=(4−λ)(−1− λ)+ 6= λ2− 3λ+2= (λ− 1)(λ− 2).

This means that the eigenvalues are λ=1 and λ=2.

λ=1. To find v, we have to solve
(

3 2
−3 −2

)

v=0. We find v=
(

2
−3

)

, or any multiple thereof.

If that was too fast for you , note that we need to solve 3v1+2v2=0, −3v1− 2v2=0. The second equation is worth less;

it is ju st the fi rst one tim es −1. H ence, we are free to set, for instance, v1 = c. The equations then g ive v2 =−3

2
c. The

most general so lu tion therefore is v=(c,−3

2
c)T . Our eigenvector above is the cho ice c=2. [W hy do we not care about

wh ich multip le o f the eigenvector to p ick? !]

λ=2. Now, we have to solve
(

2 2
−3 −3

)

v=0. We find v=
(

1
−1

)

.

Consequently, we have solutions x1=
(

2
−3

)

et and x2=
(

1
−1

)

e2t.

Let us check that these are independent using the Wronskian.

W (t) = det

(

2et e2t

−3et −e2t

)

, W (0)= det

(

2 1
−3 −1

)

=1� 0.

This certifies that x1 and x2 are independent.

Therefore, the general solution is c1x1+ c2x2= c1

(

2
−3

)

et+ c2

(

1
−1

)

e2t=

(

2c1e
t + c2e

2t

−3c1e
t − c2e

2t

)

. ♦

Remark 112. (JustForFun)

Recall that, abstractly, vectors are anything that can be added and scaled. In that abstract sense, matrices are
functions (better, operators), which take vectors as input and return vectors as output (a matrix A takes the
vector x and returns the vector Ax). These operators are linear, meaning that, for instance, A(x+y)=Ax+Ay.
Now, think of (differentiable) functions on the real line. They can be added and scaled, and so form a vector
space. There is a very interesting and basic linear operator: the derivative D, which takes a function f and
returns Df = f ′.

What are the eigenfunctions16 f and eigenvalues λ of D? That is, what are the solutions to
Df = λf? For any λ, there is a solution: the exponential f = eλx (or multiples thereof).

In other words, any λ is an eigenvalue of D and eλx is a corresponding eigenfunction. In short,
the exponentials are important because they are the eigenfunctions of the derivative! ♦

16. That is just a more politically correct name for eigenvector in this context.
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