
Sketch of Lecture 30 Mon, 03/17/2014

Remark 122. One of the problems on the midterm asked for solving y ′′′− y= ex+7.

The characteristic polynomial r3− 1 has root r=1. To find the other roots, we can do polynomial division to

get r3− 1= (r− 1)(r2+ r+1).
More generally, the roots of zn− 1 are called n-th roots of unity. zn=1 implies that |z |=1, which means that

these numbers lie on the unit circle. In particular, they are of the form eiθ. Remembering that e2πi=1, we find

that ζ = e2πi/n is a n-th root of unity and so are ζ2= e4πi/n, ζ3= e6πi/n, 	
Geometrically, the n-th roots of unity form the vertices of a regular n-gon. Now, go back to the equation z3−1
and mark the solutions on the unit circle. ♦

Remark 123. Another problem on the midterm asked to find a homogeneous linear DE solved
by solutions of the inhomogeneous linear DE y ′′+ xy= ex.

Note that this DE does not have constant coefficients. Yet, we can proceed as we did in the case of constant
coefficients: ex solves a HLDE with constant coefficients and root 1 (the “new” root); this is another way of saying
that (D−1)ex=0. Applying D−1 to both sides of the DE, we get (D−1)(y ′′+xy)= y′′′− y′′+xy′+(1−x)y=
0, which is a homogeneous linear DE.
Just one word of caution: we can write the initial DE as (D2+ x)y= ex; however, we need to be careful when
working with differential operators which involve both D and x. That’s because Dx � xD, which we can see
from Dxy=xy ′+ y versus xDy=xy ′. In other words, x and D don’t commute (just like generic matrices). ♦

Example 124. Find the general solution of x′=





1 1 −1
1 1 1
−1 1 1



x.

Solution. The characteristic polynomial is
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=(1−λ)3− 3(1− λ)− 2.

Since x3− 3x− 2 = (x+ 1)2(x− 2), the eigenvalues are λ=1− x= 2, 2,−1. Note that λ= 2 is repeated! We
say that the eigenvalue λ=2 has multiplicity 2.

λ=−1.
2 1 −1 0
1 2 1 0
−1 1 2 0

=

2r2−r1

2r3+r1

2 1 −1 0
0 3 3 0
0 3 3 0

=

2 1 −1 0
0 1 1 0
0 0 0 0

Setting, v3= c, we find v2=−c. Then, 2v1+v2−v3 implies v1= c. Setting c=1, we find v=(1,−1,1)T .

λ=2.
−1 1 −1 0
1 −1 1 0
−1 1 −1 0

=

r2+r1

r3−r1

−1 1 −1 0
0 0 0 0
0 0 0 0

The two zero rows are good news! It means that we will find two independent eigenvectors.

Indeed, we are free to set v3 = c and v2= d. Since −v1+ v2− v3 =0, it follows that v1= d− c. Hence,
the most general solution to the eigenvector equation is

v=





d− c

d

c



= c
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0
1



+ d





1
1
0



.

Consequently, we have found solutions x1=





1
−1
1



e−t, x2=





−1
0
1



e2t, x3=





1
1
0



e2t.

The Wronskian at 0 is W (0)=

∣

∣

∣

∣

∣

∣

1 −1 1
−1 0 1
1 1 0
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=−3� 0, which certifies that our three solutions are independent.

Hence, the general solution is x= c1





1
−1
1



e−t+ c2





−1
0
1



e2t+ c3





1
1
0



e2t. ♦
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