Sketch of Lecture 31

Example 125. Consider $\mathbf{x}' = \begin{pmatrix} 1 & -3 \\ 3 & 7 \end{pmatrix} \mathbf{x}$.

The characteristic polynomial $(1 - \lambda)(7 - \lambda) + 9 = \lambda^2 - 8\lambda + 16 = (\lambda - 4)^2$ has the double root $\lambda = 4$. However, $\begin{pmatrix} -3 & -3 \\ 3 & 3 \end{pmatrix} \boldsymbol{v} = 0$ has solution only $\boldsymbol{v} = c \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

We say that the eigenvalue 4 is defective with defect 1 (number of missing eigenvectors).

So far, we have found the solution $x_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{4t}$ but we are missing a second independent solution.

We want to solve $\mathbf{x}' = A\mathbf{x}$. Suppose that λ is a repeated and defective eigenvalue.

- As a first attempt, we might try to look for a solution of the form $\boldsymbol{x} = \boldsymbol{w}te^{\lambda t}$. Plugging into the DE, we get $\boldsymbol{x}' = \boldsymbol{w}e^{\lambda t} + \boldsymbol{w}\lambda te^{\lambda t} \stackrel{!}{=} A\boldsymbol{x} = A\boldsymbol{w}te^{\lambda t}$. Setting t = 0, this implies $\boldsymbol{w} = 0$ which means our first attempt failed.
- Not giving up, we next look for a solution of the form $\boldsymbol{x} = \boldsymbol{u}e^{\lambda t} + \boldsymbol{w}te^{\lambda t}$. Plugging into the DE, we now get $\boldsymbol{x}' = \boldsymbol{u}\lambda e^{\lambda t} + \boldsymbol{w}e^{\lambda t} + \boldsymbol{w}\lambda te^{\lambda t} \stackrel{!}{=} A\boldsymbol{x} = A\boldsymbol{u}e^{\lambda t} + A\boldsymbol{w}te^{\lambda t}$. Equating coefficients, we find $A\boldsymbol{w} = \lambda \boldsymbol{w}$ and $A\boldsymbol{u} = \lambda \boldsymbol{u} + \boldsymbol{w}$. Equivalently, $(A \lambda I)\boldsymbol{w} = 0$ and $(A \lambda I)\boldsymbol{u} = \boldsymbol{w}$. [\boldsymbol{u} will be called a generalized eigenvector of rank 2.]

Example. (cont'd) Let us find \boldsymbol{u} such that $\begin{pmatrix} -3 & -3 \\ 3 & 3 \end{pmatrix} \boldsymbol{w} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

Note that the second equation is -1 times the first. Hence, setting $w_2 = c$, we get $w_1 = -c - \frac{1}{3}$. Any choice of c will give us a vector \boldsymbol{w} that we need to construct a second solution. For instance, choosing c = 0, we get $\boldsymbol{w} = (-1/3, 0)^T$. This means that $\boldsymbol{x}_2 = \left[\begin{pmatrix} 1 \\ -1 \end{pmatrix} t + \begin{pmatrix} -1/3 \\ 0 \end{pmatrix} \right] e^{4t}$ is a second independent solution of the DE. \diamondsuit

This approach works whenever we have a defective eigenvalue of multiplicity 2.

The same idea leads to the concept of generalized eigenvectors.

Definition 126. v_1, \ldots, v_k form a chain of generalized eigenvectors for the eigenvalue λ if

$$(A - \lambda I)\mathbf{v}_{1} = 0 \qquad [\text{solution of } \mathbf{x}' = A\mathbf{x} \colon \mathbf{v}_{1}e^{\lambda t}]$$

$$(A - \lambda I)\mathbf{v}_{2} = \mathbf{v}_{1} \qquad [\text{solution: } (\mathbf{v}_{1}t + \mathbf{v}_{2})e^{\lambda t}]$$

$$(A - \lambda I)\mathbf{v}_{3} = \mathbf{v}_{2} \qquad \left[\text{solution: } \left(\mathbf{v}_{1}\frac{t^{2}}{2} + \mathbf{v}_{2}t + \mathbf{v}_{3}\right)e^{\lambda t}\right]$$

$$\vdots$$

$$(A - \lambda I)\mathbf{v}_{k} = \mathbf{v}_{k-1} \qquad \left[\text{solution: } \left(\mathbf{v}_{1}\frac{t^{k-1}}{(k-1)!} + \mathbf{v}_{2}\frac{t^{k-2}}{(k-2)!} + \dots \mathbf{v}_{k-1}t + \mathbf{v}_{k}\right)e^{\lambda t}\right]$$

Some comments on generalized eigenvectors:

- Note that \boldsymbol{v}_k satisfies $(A \lambda I)^k \boldsymbol{v}_k = 0$ but $(A \lambda I)^{k-1} \boldsymbol{v}_k = \boldsymbol{v}_1 \neq 0$. We say \boldsymbol{v}_k is a generalized eigenvector of rank k.
- The vectors in several chains are independent if and only if the chains are based on independent eigenvectors (the v_1 's).
- For every $n \times n$ matrix A, we can find n independent generalized eigenvectors. In particular, we can then find the general solution of x' = Ax by constructing the corresponding solutions as indicated above.