Sketch of Lecture 32

Review. generalized eigenvectors and corresponding solutions to x' = Ax

Recipe for solving $\boldsymbol{x}' = A\boldsymbol{x}$:

- find eigenvalues λ
- for each λ , find eigenvectors •
- if λ is defective, find enough chains²¹ •
- if $\lambda = a \pm bi$ is complex, take real and imaginary part of the solutions found

Example 127. Find the general solution of $\mathbf{x}' = \begin{pmatrix} 0 & 1 & 2 \\ -5 & -3 & -7 \\ 1 & 0 & 0 \end{pmatrix} \mathbf{x}$.

Solution. The characteristic polynomial is $\dots = -(\lambda + 1)^3$. Hence, $\lambda = -1$ is an eigenvalue of multiplicity 3.

Setting $v_3 = c$, we get $v_2 = -c$ and then $v_1 = -c$. The choice c = -1 gives $v_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. The corresponding solution is $\boldsymbol{x}_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix} e^{-t}$.

Since there was only one degree of freedom, there is no other independent eigenvector. $\lambda = -1$ has defect 2. Because there is only one eigenvector to build a chain upon, we now know that there has to be a chain v_1, v_2 , \boldsymbol{v}_3 of three generalized eigenvectors.

 $\begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} + c \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$ Note that the second summand is just an eigenvector! We can choose any c. For instance, choosing c = 0 gives $\boldsymbol{v}_2 = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix}$ with corresponding solution²² $\boldsymbol{x}_2 = \begin{bmatrix} 1 \\ 1 \\ -1 \end{pmatrix} t + \begin{pmatrix} -1 \\ 2 \\ 0 \end{bmatrix} e^{-t}.$

Finally, to find v_3 we have to solve $(A - \lambda I)v_3 = v_2$. We can again reuse the elimination we have already done:

Example 128. Suppose we have an eigenvalue λ of multiplicity 5.

Here are the 7 possibilities for chains, listed by the lengths of the chains that occur:

- $(defect \ 0) \ 1, 1, 1, 1, 1$ ٠
- (defect 1) 2, 1, 1, 1
- (defect 2) 2, 2, 1 or 3, 1, 1
- (defect 3) 3, 2 or 4, 1
- (defect 4) 5

Note that the defect is something we know (after computing the eigenvectors). We have seen how to do the defect 0 and defect 4 cases; the other ones are a little bit more intricate. $\langle \rangle$

[i.e., 5 eigenvectors]

 \diamond

^{21.} These computations can become a bit intricate. For exams, we will content ourselves with the defective cases involving a single chain (per eigenvalue) only.

^{22.} How does choosing a different c affect the solution x_2 . Why does it not make a difference?

^{23.} Try and see what happens if you went looking for a fourth vector v_4 in the chain. Why does it fail?