Sketch of Lecture 32 Wed, 03/19/2014

Review. generalized eigenvectors and corresponding solutions to $x' = Ax$

Recipe for solving $\mathbf{x}' = A\mathbf{x}$:

- find eigenvalues λ
• for each λ , find eig
- for each λ , find eigenvectors
• if λ is defective, find enough
- if λ is defective, find enough chains²¹
- if $\lambda = a \pm bi$ is complex, take real and imaginary part of the solutions found \diamondsuit

Example 127. Find the general solution of $x' = \left(\frac{1}{x}\right)^{x}$ \mathcal{L} 0 1 2 -5 -3 -7 1 0 0 \. $\big|x\big|$.

Solution. The characteristic polynomial is $\ldots = -(\lambda + 1)^3$. Hence, $\lambda = -1$ is an eigenvalue of multiplicity 3.

We first solve for eigenvectors: 1 1 2 0 $\begin{array}{ccc} -5 & -2 & -7 \ 1 & 0 & \frac{1}{r_2+5r_1} \\ 1 & 0 & 1 \end{array}$ 1 1 2 0 0 3 3 0 $0 \ -1 \ -1 \ 0 \ \ \ \ \frac{r_2/3}{3r_3+r_2}$ 1 1 2 0 0 1 1 0 0 0 0 0

Setting $v_3 = c$, we get $v_2 = -c$ and then $v_1 = -c$. The choice $c = -1$ gives $v_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ \mathcal{L} 1 1 −1 we get $v_2 = -c$ and then $v_1 = -c$. The choice $c = -1$ gives $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$. The corresponding solution is $\boldsymbol{x}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}.$

Since there was only one degree of freedom, there is no other independent eigenvector. $\lambda = -1$ has defect 2. Because there is only one eigenvector to build a chain upon, we now know that there has to be a chain v_1, v_2 , v_3 of three generalized eigenvectors.

To find \boldsymbol{v}_2 , we need to solve $\Big($ \mathcal{L} 1 1 2 $\begin{bmatrix} -5 & -2 & -7 \\ 1 & 0 & 1 \end{bmatrix}$ $\Big) v_2 \!=\! \Big($ \mathcal{L} 1 1 −1 . We can save time and effort by reusing the elimination 1 1 2 0 1 1 1 2 0 1 1 1 2 0 1

we have already done: $\begin{bmatrix} -5 & -2 & -7 \end{bmatrix}$ 0 1 1 0 1 0 −1 $\frac{r_2+5r_1}{r_3-r_1}$ 0 3 3 0 6 $\begin{array}{ccc|c} 0 & -1 & -1 & 0 & -2 & \frac{r_2}{3} \\ 0 & -2 & \frac{3r_3+r_2}{3} \end{array}$ 0 1 1 0 2 0 0 0 0 0

This time, $v_3 = c$ leads to $v_2 = 2 - c$. $v_1 + v_2 + 2v_3 = 1$ then gives $v_1 = -1 - c$. Hence, $v_2 =$ \mathcal{L} $-1-c$ $\frac{2-c}{c}$ This time, $v_3 = c$ leads to $v_2 = 2 - c$. $v_1 + v_2 + 2v_3 = 1$ then gives $v_1 = -1 - c$. Hence, $v_2 = \begin{pmatrix} -1 - c \\ 2 - c \\ c \end{pmatrix} =$ \mathcal{L} $\frac{-1}{2}$ 0 $+ c \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$ Ί −1 $\frac{-1}{1}$. Note that the second summand is just an eigenvector! We can choose any c. For instance, \lceil (1 Τ 1

choosing $c = 0$ gives $v_2 =$ $\overline{1}$ $\frac{-1}{2}$ 0 with corresponding solution²² $x_2 =$ \mathcal{L} 1 −1 $\left.\right)$ t + $\left(\right.$ $\overline{1}$ $\frac{-1}{2}$ 0 $\overline{1}$ e^{-t} .

Finally, to find v_3 we have to solve $(A - \lambda I)v_3 = v_2$. We can again reuse the elimination we have already done: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{0}{2}$ $\frac{1}{2}$ $\frac{-1}{2}$ $\begin{array}{ccc} -5 & -2 & -7 & 0 & 1 & 2 \ 1 & 0 & 1 & 0 & -1 & 0 \ \end{array}$ $\begin{array}{ccc} \overrightarrow{r_2+5r_1} \\ \overrightarrow{r_3-r_1} \end{array}$ $\begin{array}{ccc} 1 & 1 & 2 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{array}$ $\begin{array}{ccc|ccc}\n0 & 3 & 3 & 0 & 6 & -3 \\
\hline\n0 & 0 & 3 & 3 & 0\n\end{array}$ $\begin{array}{ccc|c} 0 & -1 & -1 & 0 & -2 & 1 & \frac{r_2/3}{3r_3+r_2} \end{array}$ $\begin{array}{|c|c|c|c|c|c|c|c|} \hline 1 & 1 & 2 & 0 & 1 & -1 \\ \hline 0 & 1 & 1 & 0 & 0 & 1 \\ \hline \end{array}$ $\begin{array}{ccc|c} 0 & 1 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array}$

As before, $v_3 = c$ leads to $v_2 = -1 - c$. $v_1 + v_2 + 2v_3 = -1$ then gives $v_1 = -c$. Choosing $c = 0$, we get $\boldsymbol{v}_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ \mathcal{L} 0 $\frac{-1}{0}$ \setminus $\overline{1}$ which gives us the solution²³ $x_3 =$ \lceil (\mathcal{L} 1 1 −1 \setminus T t^2 $rac{t^2}{2} + \Bigg($ \mathcal{L} $\frac{-1}{2}$ 0 $\left.\right)$ t + $\left(\right.$ \mathcal{L} 0 $\frac{-1}{0}$ Τ $\overline{1}$ 1 e^{-t} . \diamondsuit

Example 128. Suppose we have an eigenvalue λ of multiplicity 5.

Here are the 7 possibilities for chains, listed by the lengths of the chains that occur:

- $(\text{defect } 0) \; 1, 1, 1, 1, 1$ [i.e., 5 eigenvectors]
- $(\text{defect } 1)$ 2, 1, 1, 1
- (defect 2) 2, 2, 1 or 3, 1, 1
- $(\text{defect } 3)$ 3, 2 or 4, 1
- $(\text{defect } 4)$ 5

Note that the defect is something we know (after computing the eigenvectors). We have seen how to do the defect 0 and defect 4 cases; the other ones are a little bit more intricate.

[^{21.}](#page-0-0) These computations can become a bit intricate. For exams, we will content ourselves with the defective cases involving a single chain (per eigenvalue) only.

[^{22.}](#page-0-1) How does choosing a different c affect the solution x_2 . Why does it not make a difference?

[^{23.}](#page-0-2) Try and see what happens if you went looking for a fourth vector v_4 in the chain. Why does it fail?