Sketch of Lecture 33 Thu, 03/20/2014

Review. We now have a recipe to solve $x' = Ax$. If A is $n \times n$ (with constant entries), then we can find *n* independent solutions x_1, \ldots, x_n .

In particular, the general solution is $c_1x_1(t) + \ldots + c_nx_n(t) = \Phi(t)$ c where $\Phi(t)$ is the fundamental matrix $\Phi = (\boldsymbol{x}_1 \dots \boldsymbol{x}_n).$

Let us solve (in a general abstract sense) the IVP $x' = Ax, x(0) = x_0$. If $\bm{x}(t) = \Phi(t)\bm{c}$, then $\bm{x}(0) = \Phi(0)\bm{c} = \bm{x}_0$. We conclude that $\bm{c} = \Phi(0)^{-1}\bm{x}_0$. [Why is the matrix $\Phi(0)$ invertible?!] Hence, $\mathbf{x}(t) = \Phi(t)\Phi(0)^{-1}\mathbf{x}_0$. Note that $\Phi(t)\Phi(0)^{-1}$ is another fundamental matrix. Why?!

Theorem 129. Let $\Phi(t)$ be any fundamental matrix. Then $\Phi(t)\Phi(0)^{-1} = e^{At}$.

Here, the matrix exponential e^A is defined as $e^A = \sum_{n=0}^{\infty} \frac{A^n}{n!} = I + A + \frac{A^2}{2}$ $\frac{4^2}{2} + \frac{A^3}{3!} + \dots$ This is the same Taylor series which we know for the ordinary exponential.

Let us remind ourselves how the Taylor series $e^t = \sum_{n=0}^{\infty}$ ∞ t^n $\frac{i}{n!}$ is connected with the simple differential equation satisfied by the exponential function.

Let us demonstrate, only using the Taylor series, that $x(t) = e^{at}$ solves $x' = ax$. Indeed,

$$
x'(t) = \frac{d}{dt} \sum_{n=0}^{\infty} \frac{a^n t^n}{n!} = \sum_{n=1}^{\infty} \frac{a^n n t^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{a^n t^{n-1}}{(n-1)!} = \sum_{n=0}^{\infty} \frac{a^{n+1} t^n}{n!} = a e^{at} = a x(t).
$$

- Think about this: every step of this argument works equally well if the number a is replaced by a $n \times n$ matrix A!
- In fact, this shows that e^{At} is a fundamental matrix of $x' = Ax$.
- Clearly, $e^{At}|_{t=0}=I$. These two facts together actually prove our theorem above.

Example 130. Find a fundamental matrix for the (very easy) DE $x' = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x$.

Solution. (using e^{At}) Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Note that $A^2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. A matrix such that $A^n = 0$, for some n, is called nilpotent. In a such a case, the infinite sum $e^{At} = I + At + A^2 \frac{t^2}{2}$ $\frac{\epsilon}{2} + \dots$ is actually finite. Here, $e^{At} = I + At = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & t \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$. This is a fundamental matrix.

Solution. (using generalized eigenvectors) The characteristic polynomial is λ^2 . Hence, $\lambda = 0$ is the only eigenvalue and has multiplicity 2. Solving the eigenvector equation $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} v_1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ 0 , we (only) find $v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0 (or any multiple). This means that $\lambda = 0$ has defect 1. To find a generalized eigenvector v_2 of rank 2, we solve $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0) and obtain, for instance, $v_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ 1). The corresponding solutions are $\mathbf{x}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0 \setminus and $\boldsymbol{x}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0 $\left(t+\left(\begin{array}{c} 0 \\ 1 \end{array}\right)\right)$ 1 $)=\begin{pmatrix} t \\ 1 \end{pmatrix}$ 1). This again reveals $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ as a fundamental matrix.

Solution. (using nothing) With $x = (x_1, x_2)^T$, the system can also be written as $x'_1 = x_2, x'_2 = 0$. The second equation implies $x_2 = c$ for a constant c. Then the first equation shows $x_1 = ct + d$.

Thus $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ x_2 $=\begin{pmatrix} c t + d \\ 0 \end{pmatrix}$ c $= d \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 0 $+ c \left(\begin{array}{c} t \\ 1 \end{array} \right)$ 1). Once more, we find $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$ as a fundamental matrix.