Sketch of Lecture 34

Review. If x' = Ax, with A an $n \times n$ matrix (with constant entries), then n independent solutions $x_1, ..., x_n$ can be combined into a fundamental matrix $\Phi = (x_1 \dots x_n)$.

- The Wronskian is $W(t) = \det \Phi$.
- The general solution is simply Φc .
- $\Phi(t)$ satisfies the matrix equation $\Phi' = A\Phi$.

This is a consequence of how matrix multiplication works, and a good test of your understanding. Indeed, $\Phi' = (\boldsymbol{x}'_1 \dots \boldsymbol{x}'_n)$ and $A\Phi = A(\boldsymbol{x}_1 \dots \boldsymbol{x}_n) = (A\boldsymbol{x}_1 \dots A\boldsymbol{x}_n)$.

Example 131. Find a fundamental matrix for $\boldsymbol{x}' = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix} \boldsymbol{x}$.

Solution. (using e^{At}) Let $A = \begin{pmatrix} 2 & -1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{pmatrix} = 2I + N$ with $N = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix}$.

We want to use $e^{At} = e^{2It + Nt} = e^{2It}e^{Nt}$. This is indeed possible though we have to be careful: $e^{A+B} = e^{A}e^{B}$ holds if AB = BA. The identity matrix commutes with every other matrix, so we are good here.

 e^{2It} is simple to compute (so is the exponential of any diagonal matrix): $e^{2It} = e^{2t}I$.

 e^{Nt} is also simple to compute because N is nilpotent: $N^2 = \begin{pmatrix} 0 & 0 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, N^3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

$$e^{Nt} = I + Nt + N^2 \frac{t^2}{2} + N^3 \frac{t^3}{6} + \dots = I + Nt + N^2 \frac{t^2}{2} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & -t & t \\ 0 & 0 & 3t \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & -\frac{3}{2}t^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -t & t - \frac{3}{2}t^2 \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{pmatrix}$$
Together, $e^{At} = e^{2t} \begin{pmatrix} 1 & -t & t - \frac{3}{2}t^2 \\ 0 & 1 & 3t \\ 0 & 0 & 1 \end{pmatrix}$ is a fundamental matrix.

Solution. (using generalized eigenvectors) The characteristic polynomial is $(2 - \lambda)^3$. Hence, $\lambda = 2$ is the only eigenvalue and has multiplicity 3. Solving the eigenvector equation $\begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} v_1 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, we (only) find $v_1 = (1, 0, 0)^T$ (or any multiple). This means that $\lambda = 2$ has defect 2. There has to be a chain of length 3. To find a generalized eigenvector v_2 of rank 2, we solve $\begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} v_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ and obtain, for instance, $v_2 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$. Similarly, to find a generalized eigenvector v_3 of rank 3, we solve $\begin{pmatrix} 0 & -1 & 1 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{pmatrix} v_3 = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$ and obtain, for instance, $v_3 = \begin{pmatrix} 0 \\ -1/3 \\ -1/3 \end{pmatrix}$. The corresponding solutions are $x_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} e^{2t}$, $x_2 = \left[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} t + \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}\right] e^{2t} = \begin{pmatrix} t \\ -1 \\ 0 \end{pmatrix} e^{2t}$ and $x_3 = \left[\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} t^2 + \begin{pmatrix} 0 \\ -1/3 \\ -1/3 \end{pmatrix}\right] e^{2t} = \begin{pmatrix} t^{2/2} \\ -1/3 - t \\ -1/3 \end{pmatrix} e^{2t}$. Hence, $\begin{pmatrix} 1 & t & t^{2/2} \\ 0 & -1 & -1/3 - t \\ 0 & 0 & -1/3 \end{pmatrix} e^{2t}$ is a(nother) fundamental matrix.

The fundamental matrices look different but they are equivalent. Check it! (We did.) \diamond