Sketch of Lecture 38

Review. Variation of constants: $\boldsymbol{x}_p(t) = \Phi(t) \int \Phi(t)^{-1} \boldsymbol{f}(t) dt$ solves $\boldsymbol{x}' = A \boldsymbol{x} + \boldsymbol{f}(t)$

Here, $\Phi(t)$ is any fundamental matrix of $\mathbf{x}' = A\mathbf{x}$. In the special case that $\Phi(t) = e^{At}$, some things become easier. For instance, $\Phi(t)^{-1} = e^{-At}$. Also, we can just write down solutions to IVPs:

- $\mathbf{x}' = A\mathbf{x}, \ \mathbf{x}(0) = \mathbf{x}_0$ has (unique) solution $\mathbf{x}(t) = e^{At}\mathbf{x}_0$.
- $\mathbf{x}' = A\mathbf{x} + \mathbf{f}(t), \ \mathbf{x}(0) = \mathbf{x}_0 \text{ has (unique) solution } \mathbf{x}(t) = e^{At}\mathbf{x}_0 + e^{At}\int_0^t e^{-As}\mathbf{f}(s) \mathrm{d}s.$

Example 143. Suppose that the matrix A satisfies $e^{At} = \begin{pmatrix} 2e^{2t} - e^{3t} & -2e^{2t} + 2e^{3t} \\ e^{2t} - e^{3t} & -e^{2t} + 2e^{3t} \end{pmatrix}$.

• Solve $\boldsymbol{x}' = A\boldsymbol{x}, \, \boldsymbol{x}(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Solution. $\boldsymbol{x}(t) = e^{At} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2e^{2t} + 3e^{3t} \\ -e^{2t} + 3e^{3t} \end{pmatrix}.$

• Solve $\boldsymbol{x}' = A\boldsymbol{x} + \begin{pmatrix} 0 \\ 2e^t \end{pmatrix}, \, \boldsymbol{x}(0) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$

Solution. $\boldsymbol{x}(t) = e^{At} \begin{pmatrix} 1\\ 2 \end{pmatrix} + e^{At} \int_{0}^{t} e^{-As} \boldsymbol{f}(s) ds$. We compute:

$$\int_{0}^{t} e^{-As} \boldsymbol{f}(s) ds = \int_{0}^{t} \left(\begin{array}{c} 2e^{-2s} - e^{-3s} & -2e^{-2s} + 2e^{-3s} \\ e^{-2s} - e^{-3s} & -e^{-2s} + 2e^{-3s} \end{array} \right) \begin{pmatrix} 0 \\ 2e^{s} \end{pmatrix} ds = \int_{0}^{t} \left(\begin{array}{c} -4e^{-s} + 4e^{-2s} \\ -2e^{-s} + 4e^{-2s} \end{array} \right) ds = \left(\begin{array}{c} 4e^{-t} - 2e^{-2t} - 2 \\ 2e^{-t} - 2e^{-2t} \end{array} \right)$$

$$\text{Hence, } e^{At} \int_{0}^{t} e^{-As} \boldsymbol{f}(s) ds = \left(\begin{array}{c} 2e^{2t} - e^{3t} & -2e^{2t} + 2e^{3t} \\ e^{2t} - e^{3t} & -e^{2t} + 2e^{3t} \end{array} \right) \left(\begin{array}{c} 4e^{-t} - 2e^{-2t} - 2 \\ 2e^{-t} - 2e^{-2t} \end{array} \right) = \left(\begin{array}{c} 2e^{t} - 4e^{2t} + 2e^{3t} \\ -2e^{2t} + 2e^{3t} \end{array} \right)$$

$$\text{Finally, } \boldsymbol{x}(t) = \left(\begin{array}{c} -2e^{2t} + 3e^{3t} \\ -e^{2t} + 3e^{3t} \end{array} \right) + \left(\begin{array}{c} 2e^{t} - 4e^{2t} + 2e^{3t} \\ -2e^{2t} + 2e^{3t} \end{array} \right) = \left(\begin{array}{c} 2e^{t} - 6e^{2t} + 5e^{3t} \\ -3e^{2t} + 5e^{3t} \end{array} \right)$$

• What is A?

Solution. Like any fundamental matrix, e^{At} satisfies $\frac{d}{dt}e^{At} = Ae^{At}$. Hence $A = \begin{bmatrix} \frac{d}{dt}e^{At} \end{bmatrix} = \begin{bmatrix} 4e^{2t} - 3e^{3t} & -4e^{2t} + 6e^{3t} \end{bmatrix} = \begin{pmatrix} 1 & 2 \end{pmatrix}$

Hence,
$$A = \left[\frac{\mathrm{d}}{\mathrm{d}t}e^{At}\right]_{t=0} = \left[\left(\begin{array}{cc} 4e^{2t} - 3e^{3t} & -4e^{2t} + 6e^{3t} \\ 2e^{2t} - 3e^{3t} & -2e^{2t} + 6e^{3t} \end{array} \right) \right]_{t=0} = \left(\begin{array}{c} 1 & 2 \\ -1 & 4 \end{array} \right).$$

Example 144. Three brine tanks T_1, T_2, T_3 .

 T_1 contains 20gal water with 10lb salt, T_2 40gal pure water, T_3 50gal water with 30lb salt. T_1 is filled with 10gal/min water with 2lb/gal salt. 10gal/min well-mixed solution flows out of T_1 into T_2 . Also, 10gal/min well-mixed solution flows out of T_2 into T_3 . Finally, 10gal/min well-mixed solution is leaving T_3 . How much salt is in the tanks after t minutes?

Solution. Let $x_i(t)$ denote the amount of salt (in lb) in tank T_i after time t (in min). In time interval $[t, t + \Delta t]$: $\Delta x_1 \approx 10 \cdot 2 \cdot \Delta t - 10 \frac{x_1}{20} \cdot \Delta t$, so $x'_1 = 20 - \frac{1}{2}x_1$. Also, $x_1(0) = 10$.

$$\Delta x_2 \approx 10 \cdot \frac{x_1}{20} \cdot \Delta t - 10 \frac{x_2}{40} \cdot \Delta t, \text{ so } x_2' = \frac{1}{2} x_1 - \frac{1}{4} x_2. \text{ Also, } x_2(0) = 0.$$

$$\Delta x_3 \approx 10 \cdot \frac{x_2}{40} \cdot \Delta t - 10 \frac{x_3}{50} \cdot \Delta t, \text{ so } x_3' = \frac{1}{4} x_2 - \frac{1}{5} x_3. \text{ Also, } x_3(0) = 30.$$

Using matrix notation and writing $\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, this is $\boldsymbol{x}' = \begin{pmatrix} -1/2 & 0 & 0 \\ 1/2 & -1/4 & 0 \\ 0 & 1/4 & -1/5 \end{pmatrix} \boldsymbol{x} + \begin{pmatrix} 20 \\ 0 \\ 0 \end{pmatrix}, \boldsymbol{x}(0) = \begin{pmatrix} 10 \\ 0 \\ 30 \end{pmatrix}.$

We can solve this IVP! (Details in our book.)

Here, we content ourselves with a particular solution (and ignoring the initial conditions). Undetermined coefficients tells us that there is a solution of the form $\boldsymbol{x}_p(t) = \boldsymbol{a}$. Of course, we can find \boldsymbol{a} by plugging into the differential equation. However, noticing that, for a constant solution, each tank has to have a concentration of 2lb/gal of salt, we find $\boldsymbol{x}_p = (40, 80, 100)$ without calculation.

 \diamond

This is Example 5.6.2 in the book.