Sketch of Lecture 39

 \diamond

Fourier series

Definition 145. Let L > 0. f(t) is *L*-periodic if f(t+L) = f(t) for all *t*. The smallest such *L* is called "the" period of *f*.

Example 146. The period of $\cos(nt)$ is $2\pi/n$.

Example 147. The trigonometric functions $\cos(nt)$, $\sin(nt)$ are 2π -periodic. And so are all their linear combinations. (In other words, 2π -periodic functions form a vector space.) \diamond

The following amazing fact is saying that any 2π -periodic function can be written as a sum of cosines and sines.

Theorem 148. Every^{*} 2π -periodic function f can be written as a Fourier series²⁶

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nt) + b_n \sin(nt)).$$

Technical detail*: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity, then the Fourier series converges to the average $\frac{f(t^{-}) + f(t^{+})}{2}$. The Fourier coefficients a_n , b_n are unique and can be computed as

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt.$$

Example 149. Find the Fourier series of the 2π -periodic function f(t) defined by

$$f(t) = \begin{cases} -1, & \text{for } t \in (-\pi, 0), \\ +1, & \text{for } t \in (0, \pi), \\ 0, & \text{for } t = -\pi, 0, \pi. \end{cases}$$

Solution. We compute $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt = 0$, as well as

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt = \frac{1}{\pi} \left[-\int_{-\pi}^{0} \cos(nt) dt + \int_{0}^{\pi} \cos(nt) dt \right] = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = \frac{1}{\pi} \left[-\int_{-\pi}^{0} \sin(nt) dt + \int_{0}^{\pi} \sin(nt) dt \right] = \frac{2}{\pi n} [1 - \cos(n\pi)]$$

$$= \frac{2}{\pi n} [1 - (-1)^n] = \begin{cases} \frac{4}{\pi n} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}.$$

on $f(t) = \sum_{n=1}^{\infty} \frac{4}{\pi n} \sin(nt) = \frac{4}{\pi} (\sin(t) + \frac{1}{\pi} \sin(3t) + \frac{1}{\pi} \sin(5t) + \frac{1}{\pi})$

In conclusion, $f(t) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(nt) = \frac{4}{\pi} \left(\sin(t) + \frac{1}{3} \sin(3t) + \frac{1}{5} \sin(5t) + \dots \right).$

Remark 150. (JustForFun) Set $t = \frac{\pi}{2}$ in the Fourier series we just computed, to get Leibniz' series²⁷ $\pi = 4[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ...]$; which brings us back to our April fool's derivation of $\pi = 4$. The trouble boils down to the fact that we would like to conclude that the convergence of functions $f_n \to f$ implies that their arc length $L(f_n)$ converges to L(f). That's a natural instinct (and would be true if L is continuous). However, arc length depends on the derivative (remember its formula?!), and $f_n \to f$ does not²⁸ necessarily imply $f'_n \to f'$.

^{26.} Another common way to write Fourier series is $f(t) = \sum_{n=-\infty}^{\infty} c_n e^{int}$. These two ways are equivalent; we can convert between them using Euler's identity $e^{int} = \cos(nt) + i\sin(nt)$.

^{27.} For such an alternating series, the error made by stopping at the term 1/n is on the order of 1/n. To compute the 768 digits of π to get to the Feynman point, we would (roughly) need $1/n < 10^{-768}$, or $n > 10^{768}$. That's a lot of terms! (Roger Penrose, for instance, estimates that there are about 10^{80} atoms in the observable universe.) 28. In other words, taking the derivative of a function is not a continuous operator! That's a subject for functional analysis, which studies spaces of functions as well as operators between such spaces.