Sketch of Lecture 40 Wed, 04/09/2014

There was nothing special about 2π -periodic functions considered last time (except that $\cos(t)$) and sin (t) have period 2π). Note that cos $(\pi t/L)$ has period $2L$.

Theorem 151. Every∗ 2L-periodic function f can be written as a Fourier series

$$
f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right).
$$

Technical detail*: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity, then the Fourier series converges to the average $\frac{f(t^-) + f(t^+)}{2}$. The Fourier coefficients a_n , b_n are unique and can be computed as

$$
a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos\left(\frac{n\pi t}{L}\right) dt, \qquad b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin\left(\frac{n\pi t}{L}\right) dt.
$$

Review. Last time, we computed $f(t) =$ $\sqrt{ }$ Į \mathcal{L} -1 , for $t \in (-\pi, 0)$, $+1, \text{ for } t \in (0, \pi),$ 0, for $t = -\pi, 0, \pi$ $= \sum$ $n=1$ $n \,$ odd $\sum_{k=1}^{\infty} 4$ $rac{1}{\pi n}$ sin (*nt*). \diamondsuit

Example 152. Find the Fourier series of the 2-periodic function $g(t)$ = \int \mathcal{L} -1 for $t \in (-1,0)$ $+1$ for $t \in (0, 1)$ 0 for $t = -1, 0, 1$.

Solution. Instead of computing from scratch, we can use the fact that $g(t) = f(\pi t)$, with f as reviewed above, to get $g(t) = f(\pi t) = \sum_{n \text{ odd}}$ 4 $\frac{4}{\pi n} \sin(n \pi t).$

Remark 153. Convergence of such series is not obvious! Recall, for instance, that the (odd part of) the harmonic series $1 + \frac{1}{3} + \frac{1}{5}$ $\frac{1}{5} + \frac{1}{7}$ $\frac{1}{7} + \cdots$ diverges. \Diamond

Theorem 154. If $f(t)$ is continuous and $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(\frac{n\pi t}{L}) + b_n \sin(\frac{n\pi t}{L}))$, then* $f'(t) = \sum_{n=1}^{\infty} \left(\frac{n\pi}{L} b_n \cos\left(\frac{n\pi t}{L}\right) - \frac{n\pi}{L} \right)$ $\frac{2\pi}{L} a_n \sin(\frac{n\pi t}{L})$ (i.e., we can differentiate termwise).

Technical detail[∗]: f' needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).

Example 155. Let $h(t)$ be the 2-periodic function with $h(t) = \begin{cases} -t & \text{for } t \in (-1,0) \\ +t & \text{for } t \in (0,1) \end{cases}$. Compute the Fourier series of $h(t)$.

Solution. We could just use the integral formulas to compute a_n and b_n . Since $h(t)$ is even (plot it!), we will find that $b_n = 0$. Computing a_n is left as an exercise.

Solution. Note that $h(t)$ is continuous and $h'(t) = g(t)$, with $g(t)$ as in Example [152.](#page-0-0) Hence, we can apply Theorem [154](#page-0-1) to conclude

$$
h'(t) = g(t) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi t) \implies h(t) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \left(-\frac{1}{\pi n}\right) \cos(n\pi t) + C,
$$

where $C = \frac{a_0}{2}$ $\frac{x_0}{2} = \frac{1}{2}$ $\frac{1}{2} \int_{-1}^{1}$ $\frac{1}{-1} h(t) dt$ is the constant of integration. Thus, $h(t) = \frac{1}{2} - \sum_{n \text{ odd}}$ 4 $rac{4}{\pi^2 n^2} \cos (n \pi t).$ \diamondsuit

Remark 156. Note that $t=0$ in the last Fourier series, gives us $\frac{\pi^2}{8} = \frac{1}{1}$ $\frac{1}{1} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ As an exercise, you can try to find from here the fact that $\sum_{n\geqslant 1}$ $\frac{1}{n^2} = \frac{\pi^2}{6}$ $\frac{1}{6}$. Similarly, we can use Fourier series to find that $\sum_{n\geqslant 1}$ $\frac{1}{n^4} = \frac{\pi^4}{90}.$ JFF: if you recall from lecture 13, these are the values $\zeta(2)$ and $\zeta(4)$ of the Riemann zeta function $\zeta(s)$. No such values are known for $\zeta(3), \zeta(5), \ldots$ Nobody believes these to be rational numbers, but it was only in 1978 that Apéry proved that $\zeta(3)$ is not a rational number²⁹. . \Diamond

Example 157. The function $g(t)$, from in Example [152,](#page-0-0) is not continuous. For all values, except the discontinuities, we have $g'(t) = 0$. On the other hand, differentiating the Fourier series termwise, results in $4\sum_{n \text{ odd}} \cos{(n\pi t)}$, which diverges³⁰ for most values of t (that's easy to check for $t = 0$). This illustrates that we cannot apply Theorem [154](#page-0-1) because of the missing continuity. \diamondsuit

[^{29.}](#page-0-2) We also know that at least one of $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is not a rational number. (Our state of ignorance!) [30.](#page-0-3) The issues we are facing here can be fixed by generalizing the notion of function to distributions. (Maybe you have heard of the Dirac delta "function".)