Sketch of Lecture 42 Tue, 04/15/2014

Inverting matrices of any size

In order to compute A^{-1} , we need to find a matrix X such that $AX = I$. If this equation has a solution X, then $X = A^{-1}$. As we have done before, we write $A|I$ and perform elimination on the rows. Instead of stopping at a triangular shape, we continue until we get $I|B$. Then $A^{-1} = B$. This is best explained by an example (which we can already do).

Example 160. Let $A = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$. Find A^{-1} .

Solution. We eliminate

3 1 1 0 2 1 0 1 ⁼¹ 3 r1 r2− 2 3 r1 1 1/3 1/3 0 0 1/3 −2/3 1 ^r⁼1−r² 3r² 1 0 1 −1 ⁰ ¹ [−]2 3 ^A−¹ ⁼ 1 −1 [−]2 3 .

Solution. Using $\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$, we again find $A^{-1} = \begin{pmatrix} 1 & -1 \\ -2 & 3 \end{pmatrix}$. \Diamond

Example 161. Find e^{At} if $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\overline{1}$ 1 2 0 0 1 0 $0 -1 2$ \setminus \cdot

Solution. We first compute a fundamental matrix $\Phi(t)$ for $x' = Ax$. To begin with, we easily see that the eigenvalues are $\lambda = 1, 1, 2$ (why?!).

$$
\lambda = 2. \begin{pmatrix} -1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{pmatrix} v = 0.
$$
 We find the eigenvector $v = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.
\n
$$
\lambda = 1. \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix} v = 0.
$$
 We find the eigenvector $v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ but no second independent eigenvector. $\lambda = 1$ has defect 1. We therefore solve $\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & -1 & 1 \end{pmatrix} v_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, and find, for instance, $v_2 = \begin{pmatrix} 0 \\ 1/2 \\ 1/2 \end{pmatrix}$.

Taken together, we have found that $\Phi(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ 0 $\frac{1}{2}e^{t}$ 0 $\begin{pmatrix} 0 & \frac{1}{2}e^t & 0 \\ 0 & \frac{1}{2}e^t & e^{2t} \end{pmatrix}$ is a fundamental matrix.

We can now find e^{At} from $e^{At} = \Phi(t)\Phi(0)^{-1}$.

$$
\Phi(0) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 1/2 & 1 \end{pmatrix}, \quad \begin{array}{ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1/2 & 0 & 0 & 1 & 0 \\ 0 & 1/2 & 1 & 0 & 0 & 1 \end{array} \implies \begin{array}{ccc} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{array} \implies \begin{array}{ccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \end{array}
$$

Hence,

$$
e^{At} = \Phi(t)\Phi(0)^{-1} = \begin{pmatrix} e^t & te^t & 0 \\ 0 & \frac{1}{2}e^t & 0 \\ 0 & \frac{1}{2}e^t & e^{2t} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & -1 & 1 \end{pmatrix} = \begin{pmatrix} e^t & 2te^t & 0 \\ 0 & e^t & 0 \\ 0 & e^t - e^{2t} & e^{2t} \end{pmatrix}.
$$

Solution. (failed attempt) We can write³¹ $A = D + N$ with $D = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ \mathcal{L} 1 0 0 0 1 0 0 0 2 $\Big)$ and $N = \Big($ \mathcal{L} 0 2 0 0 0 0 $0 -1 0$ $\Big)$. We quickly check that N is nilpotent: in fact, $N^2 = 0$. Therefore,

$$
e^{Dt}e^{Nt} = \begin{pmatrix} e^t & 0 & 0 \\ 0 & e^t & 0 \\ 0 & 0 & e^{2t} \end{pmatrix} (I + Nt) = \begin{pmatrix} e^t & 0 & 0 \\ 0 & e^t & 0 \\ 0 & 0 & e^{2t} \end{pmatrix} \begin{pmatrix} 1 & 2t & 0 \\ 0 & 1 & 0 \\ 0 & -t & 1 \end{pmatrix} = \begin{pmatrix} e^t & 2te^t & 0 \\ 0 & e^t & 0 \\ 0 & -te^{2t} & e^{2t} \end{pmatrix}.
$$

This cannot be e^{At} because of the entry $-te^{2t}$. What went wrong?! Well, in order to use $e^{At} = e^{Dt}e^{Nt}$ we first need to check that $DN = ND$. This is not the case here!

[^{31.}](#page-0-0) Here is a twist on our usual approach, which can be used here: write $A = I + B$. Then B is not nilpotent, but we observe that $B^2 = B^3 = B^4 = \dots$ Do you see how to use this to compute e^{Bt} , and then e^{At} ?