The Laplace transform

Definition 162. The Laplace transform of a function $f(t)$, $t \ge 0$, is defined as the new function

$$
F(s) = \int_0^\infty e^{-st} f(t) \mathrm{d}t.
$$

We also write $\mathcal{L}(f(t)) = F(s)$.

Note that, in order for the integral to exist, $f(t)$ should be, say, piecewise continuous and of at most exponential growth. That's true for most of the functions, we are interested in (and we will not dwell on this issue).

Example 163.

$$
\mathcal{L}(e^{a t}) = \int_0^\infty e^{-s t} e^{a t} \mathrm{d}t = \int_0^\infty e^{(a-s)t} \mathrm{d}t = \left[\frac{1}{a-s} e^{(a-s)t} \right]_{t=0}^\infty = 0 - \frac{1}{a-s} = \frac{1}{s-a}
$$

Note that we needed $a - s < 0$ in order for the integral to converge. Hence the Laplace transform has domain $s > a$. (During this introduction, we will not care too much about these technical details.) $s > a$. (During this introduction, we will not care too much about these technical details.)

Example 164. The Laplace transform is linear:

$$
\mathcal{L}(c_1f_1(t) + c_2f_2(t)) = \int_0^\infty e^{-st}(c_1f_1(t) + c_2f_2(t))dt = c_1 \int_0^\infty e^{-st}f_1(t)dt + c_2 \int_0^\infty e^{-st}f_2(t)dt,
$$

which equals $c_1F_1(s) + c_2F_2(s)$.

Example 165. By Euler's identity, $e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$. Hence, by linearity,

$$
\mathcal{L}(e^{i\omega t}) = \mathcal{L}(\cos(\omega t)) + i\mathcal{L}(\sin(\omega t)).
$$

On the other hand,

$$
\mathcal{L}(e^{i\omega t}) = \frac{1}{s - i\omega} = \frac{s + i\omega}{s^2 + \omega^2} = \frac{s}{s^2 + \omega^2} + i\frac{\omega}{s^2 + \omega^2}.
$$

Matching real and imaginary parts, gives $\mathcal{L}(\cos(\omega t)) = \frac{s}{s^2 + \omega^2}$ and $\mathcal{L}(\sin(\omega t)) = \frac{\omega}{s^2 + \omega^2}$

Example 166. Using integration by parts,

$$
\mathcal{L}(f'(t)) = \int_0^\infty e^{-st} f'(t) dt = [e^{-st} f(t)]_{t=0}^\infty + \int_0^\infty s e^{-st} f(t) dt = sF(s) - f(0).
$$

In order to obtain the Laplace transform of higher derivatives, we can iterate. For instance,

$$
\mathcal{L}(f''(t)) = s\mathcal{L}(f'(t)) - f'(0) = s[sF(s) - f(0)] - f'(0) = s^2F(s) - sf(0) - f'(0).
$$

Example 167. Consider the (very simple) IVP $x'(t) - 2x(t) = 0$, $x(0) = 7$. [Of course, $x(t) = 7e$

$$
\mathcal{L}(x'(t) - 2x(t)) = \mathcal{L}(x'(t)) - 2\mathcal{L}(x(t)) = sX(s) - x(0) - 2X(s) = (s - 2)X(s) - 7 = 0.
$$

This is an algebraic equation for $X(s)$. It follows that $X(s) = \frac{7}{s-2}$. By inverting the Laplace transform (which is possible!), we conclude that $x(t) = 7e^{2t}$. And the contract of the con

 $2t$ _.

. \Diamond