Sketch of Lecture 50 Wed, 04/30/2014

Review. heat equation \diamondsuit

Example 190. Find the unique solution to:
$$
u_t = ku_{xx}
$$

$$
u(0, t) = u(L, t) = 0
$$

$$
u(x, 0) = f(x), \quad x \in (0, L)
$$

$$
(IC)
$$

Solution. We will first look for simple solutions of PDE+BC (and then we plan to take a superposition of such solutions that satisfies IC as well). Namely, we look for solutions $u(x, t) = X(x)T(t)$. This approach is called separation of variables and it is crucial for solving other PDEs as well.

Plugging into the PDE, we get $X(x)T'(t) = kX''(x)T(t)$, and so $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)}$ $\frac{T(t)}{kT(t)}$. Note that the two sides cannot depend on x (because the right-hand side doesn't) and they cannot depend on t (because the left-hand side doesn't). Hence, they have to be constant. Let's call this constant $-\lambda$. Then, $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)}$ $\frac{1}{kT(t)} = \text{const} =:-\lambda.$ We thus have $X'' + \lambda X = 0$ and $T' + \lambda kT = 0$.

Consider the BC. $u(0, t) = X(0)T(t) = 0$ implies $X(0) = 0$ (because otherwise $T(t) = 0$ for all t, which would mean that $u(x, t)$ is the dull zero solution). Likewise, $u(L, t) = X(L)T(t) = 0$ implies $X(L) = 0$.

So X solves $X'' + \lambda X = 0$, $X(0) = 0$, $X(L) = 0$. We know that, up to multiples, the only nonzero solutions are the eigenfunctions $X(x) = \sin\left(\frac{\pi n}{L}x\right)$ corresponding to the eigenvalues $\lambda = \left(\frac{\pi n}{L}\right)^2$, $n = 1, 2, 3...$

On the other hand, T solves
$$
T' + \lambda kT = 0
$$
, and hence $T(t) = e^{-\lambda kt} = e^{-\left(\frac{\pi n}{L}\right)^2 kt}$.

Taken together, we have the solutions $u_n(x,t) = e^{-\left(\frac{\pi n}{L}\right)^2 k t} \sin\left(\frac{\pi n}{L}x\right)$ solving PDE+BC.

We wish to combine these in such a way that IC holds. At $t = 0$, $u_n(x, 0) = \sin\left(\frac{\pi n}{L}x\right)$. All of these are 2Lperiodic. Hence, we extend $f(x)$, which is only given on $(0, L)$, to an odd 2L-periodic function. By making it odd, its Fourier series will only involve sine terms: $f(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{\pi n}{L}x)$.

Consequently, PDE+BC+IC is solved by
$$
u(x,t) = \sum_{n=1}^{\infty} b_n u_n(x,t) = \sum_{n=1}^{\infty} b_n e^{-\left(\frac{\pi n}{L}\right)^2 kt} \sin\left(\frac{\pi n}{L}x\right)
$$
.

Example 191. Find the unique solution to: $u(0, t) = u(1, t) = 0$ $u_t = u_{xx}$ $u(x, 0) = 1, \quad x \in (0, 1)$

Solution. This is the case $k = 1$, $L = 1$ and $f(x) = 1$, $x \in (0, 1)$, of the previous example. In the final step, we extend $f(x)$ to the 2-periodic odd function of Example [152.](#page--1-0) In particular, we have already computed that the Fourier series is $f(x) = \sum_{n=1,n}^{\infty} \frac{4}{n^2} \sin(\pi nx)$.

Hence, $u(x,t) = \sum_{n=1,n \text{ odd}}^{\infty} \frac{4}{\pi n} e^{-\pi^2 n^2 t} \sin(\pi n x).$

The boundary conditions in the next example model insulated ends.

Example 192. Find the unique solution to:
$$
u_t = ku_{xx}
$$

$$
u_x(0,t) = u_x(L,t) = 0
$$

$$
u(x,0) = f(x), \quad x \in (0,L)
$$

$$
(IC)
$$

Solution. We proceed as before and look for solutions $u(x,t) = X(x)T(t)$. Plugging into the PDE, we get $X(x)T'(t) = kX''(x)T(t)$, and so $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)}$ $\frac{dI(t)}{dxT(t)} = \text{const} = -\lambda$. We thus have $X'' + \lambda X = 0$ and $T' + \lambda kT = 0$. From the BC $u_x(0,t) = X'(0)T(t) = 0$ we get $X'(0) = 0$. Likewise, $u_x(L,t) = X'(L)T(t) = 0$ implies $X'(L) = 0$. So X solves $X'' + \lambda X = 0$, $X'(0) = 0$, $X'(L) = 0$. It is left as an exercise (DO IT!!) that, up to multiples, the only nonzero solutions of this eigenvalue problem are $X(x) = \cos(\frac{\pi n}{L}x)$ corresponding to $\lambda = (\frac{\pi n}{L})^2$, $n = 0, 1, 2, 3...$

As before, T solves $T' + \lambda kT = 0$, and hence $T(t) = e^{-\lambda kt} = e^{-\left(\frac{\pi n}{L}\right)^2 kt}$.

Taken together, we have the solutions $u_n(x,t) = e^{-\left(\frac{\pi n}{L}\right)^2 k t} \cos\left(\frac{\pi n}{L}x\right)$ solving PDE+BC.

We wish to combine these in such a way that IC holds. At $t = 0$, $u_n(x, 0) = \cos\left(\frac{\pi n}{L}x\right)$. All of these are 2Lperiodic. Hence, we extend $f(x)$, which is only given on $(0, L)$, to an even 2L-periodic function. By making it even, its Fourier series will only involve cosine terms: $f(x) = \frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos\left(\frac{\pi n}{L}x\right)$.

So, PDE + BC + IC is solved by
$$
u(x,t) = \frac{a_0}{2}u_0(x,t) + \sum_{n=1}^{\infty} a_n u_n(x,t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-\left(\frac{\pi n}{L}\right)^2 kt} \cos\left(\frac{\pi n}{L}x\right)
$$
. \diamondsuit