Midterm #1

Net ID:

- No notes, personal aids or calculators are permitted.
- Answer all questions in the space provided. If you require more space to write your answer, you may continue on the back of the page. There is a blank page at the end of the exam for rough work.
- Explain your work! Little or no points will be given for a correct answer with no explanation of how you got it.

Good luck!

Problem 1. (5 points) Circle the slope field below which belongs to the differential equation $e^x y' = x - y$.

Problem 2. (20 points) Find the general solution to the differential equation $y^{(5)} - 4y^{(4)} + 4y^{(3)} = 0$.

Armin Straub

astraub@illinois.edu

Solution. This is a linear homogeneous equation with constant coefficients. The characteristic polynomial is $r^5 - 4r^4 + 4r^3 = r^3(r-2)^2$.

Hence, the general solution is $c_1 + c_2x + c_3x^2 + (c_4 + c_5x)e^{2x}$.

Problem 3. (20 points) Solve the initial value problem

$$(x^2+1)\frac{\mathrm{d}y}{\mathrm{d}x} + xy = \frac{1}{\sqrt{x^2+1}}, \qquad y(0) = 1.$$

Solution. Dividing by $x^2 + 1$, we get

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{x}{x^2 + 1} \, y = \frac{1}{(x^2 + 1)^{3/2}},$$

which is a linear equation with integrating factor

$$e^{\int \frac{x}{x^2+1} \mathrm{d}x} = e^{\frac{1}{2}\ln(x^2+1)} = (x^2+1)^{1/2}.$$

Multiply through by this integrating factor, we obtain

$$(x^2+1)^{1/2}\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{x}{(x^2+1)^{1/2}}y = \frac{\mathrm{d}}{\mathrm{d}x}\left((x^2+1)^{1/2}y\right) = \frac{1}{x^2+1}.$$

Integrating both sides with respect to x yields

$$(x^{2}+1)^{1/2} y(x) = \arctan(x) + C.$$

Since y(0) = 1, we find C = 1. Therefore,

$$y(x) = \frac{\arctan(x) + 1}{(x^2 + 1)^{1/2}}.$$

Problem 4. (20 points) The time rate of change of a rabbit population P is proportional to the square root of P. At time t = 0, the population numbers 100 rabbits and is increasing at the rate of 20 rabbits per month. How many rabbits will there be after two months?

Solution. $\frac{dP}{dt} = k\sqrt{P}$ and P(0) = 100, P'(0) = 20. The problem asks for P(2). At t = 0, we have $20 = P'(0) = k\sqrt{P(0)} = 10k$. Hence k = 2.

By separation of variables, we find $2\sqrt{P} = 2t + C$. From P(0) = 100, C = 20. Thus, $P = (t + 10)^2$.

We conclude that there are $P(2) = 12^2 = 144$ rabbits after two months.

Problem 5. (20 points) For each $c \ge 0$, let $y_c(x) = \begin{cases} x^3, & \text{if } x < 0, \\ 0, & \text{if } 0 \le x \le c, \\ (x-c)^3, & \text{if } x > c. \end{cases}$

- (a) Sketch the graph of $y_c(x)$ for c = 3/2.
- (b) Show that, for all $c \ge 0$, y_c is a solution to the initial value problem

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3y^{2/3}, \quad y(0) = 0.$$

(c) Explain why (b) does not contradict the theorem on existence and uniqueness for solutions to initial value problems.

Solution.

(a) For c = 3/2, the graph looks as follows.

- (b) Clearly, $y_c(0) = 0$. Moreover, since $\frac{d}{dx}x^3 = 3x^2 = 3(x^3)^{2/3}$, $\frac{d}{dx}(x-c)^3 = 3(x-c)^2 = 3[(x-c)^3]^{2/3}$, and all the left and right derivatives at the appropriate endpoints match, $y_c(x)$ satisfies the DE $y' = 3y^{2/3}$.
- (c) Note that (b) demonstrates that there are infinitely many solutions to the IVP. Thus we do not have uniqueness.

Write the DE as y' = f(x, y) with $f(x, y) = 3y^{2/3}$ which is continuous around the point (0, 0) = (0, y(0)). However, $\frac{\partial}{\partial y}f(x, y) = 2y^{-1/3}$ is not continuous around the point (0, 0). Our theorem on existence and uniqueness therefore only guarantees existence but not uniqueness for this particular IVP. Problem 6. (20 points) Find a general solution to the differential equation

$$x^2 \frac{\mathrm{d}y}{\mathrm{d}x} - x^2 - y^2 - 3xy = 0.$$

Solution. Dividing through by x^2 , the equation becomes

$$\frac{{\rm d}y}{{\rm d}x} = 1 + (y/x)^2 + 3(y/x)$$

Making the homogeneous substitution v = y/x, we have $\frac{\mathrm{d}y}{\mathrm{d}x} = x \frac{\mathrm{d}v}{\mathrm{d}x} + v = 1 + v^2 + 3v$, which gives

$$x \frac{\mathrm{d}v}{\mathrm{d}x} = v^2 + 2v + 1 = (v+1)^2.$$

By separation of variables, we get $\frac{dv}{(v+1)^2} = \frac{dx}{x}$ (note that we just lost the singular solution v = -1 which corresponds to the solution y = -x of the original equation). Integrating, we have $-(v+1)^{-1} = \ln |x| + C$ and hence

$$y(x) = -\frac{x}{\ln|x| + C} - x.$$

Problem 7. (5 points) Consider the differential equation

Hint: Do not attempt to solve the DE.

$$y' = y^4 + x^4 + 1.$$

Is it possible that there exists a solution with the property that $\lim_{x \to \infty} y(x) = -\infty$? Why, or why not?

Solution. It is impossible. It follows from the differential equation that y'(x) > 0 for all x. In other words, any solution y(x) is an increasing function, and thus cannot approach $-\infty$ for large x.