Midterm #2

Net ID:

- No notes, personal aids or calculators are permitted.
- Answer all questions in the space provided. If you require more space to write your answer, you may continue on the back of the page. There is a blank page at the end of the exam for rough work.
- Explain your work! Little or no points will be given for a correct answer with no explanation of how you got it.

Good luck!

Problem 1. (5 points) Consider a homogeneous linear differential equation with constant real coefficients which has order 6. Suppose $y(x) = x^2 e^{2x} \cos(x)$ is a solution. Write down the general solution.

Solution. The general solution is $(c_1 + c_2x + c_3x^2)e^{2x}\cos(x) + (c_4 + c_5x + c_6x^2)e^{2x}\sin(x)$.

Problem 2. (20 points) Find the general solution of $x' = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} x$.

Solution. The characteristic polynomial $(1 - \lambda)^2 - 4$ has roots $\lambda = -1, 3$. For $\lambda = 3$, solving $\begin{pmatrix} -2 & 2 \\ 2 & -2 \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, we find the eigenvector $\boldsymbol{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. For $\lambda = -1$, solving $\begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, we find the eigenvector $\boldsymbol{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Hence, the general solution is $\boldsymbol{x}(t) = c_1 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{3t} + c_2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^{-t}$.

Problem 3. (10 points) The position x(t) of a certain mass on a spring is described by $x'' + cx' + 5x = F \sin(\omega t)$.

- (a) Assume first that there is no external force, i.e. F = 0. For which values of c is the system overdamped?
- (b) Now, $F \neq 0$ and the system is undamped, i.e. c = 0. For which values of ω , if any, does resonance occur?

Solution.

- (a) The discriminant of the characteristic equation is $c^2 20$. Hence the system is overdamped if $c^2 20 > 0$, that is $c > \sqrt{20} = 2\sqrt{5}$.
- (b) The natural frequency is $\sqrt{5}$. Resonance therefore occurs if $\omega = \sqrt{5}$.

Problem 4. (20 points) Find the general solution of the differential equation $y^{(3)} - y = e^x + 7$.

Solution. Let us first solve the homogeneous equation y''' - y = 0. Its characteristic polynomial $r^3 - 1 = (r - 1)(r^2 + r + 1)$ has roots r = 1 and $r = -\frac{1}{2} \pm i\frac{\sqrt{3}}{2}$.

There is a particular solution of the form $y_p = Axe^x + B$.

 $y_p^{\,\prime}\!=\!A(x+1)e^x,\;y_p^{\prime\prime}\!=\!A(x+2)e^x,\;y_p^{\prime\prime\prime}\!=\!A(x+3)e^x$

Plugging into the DE, we get $y_p''' - y_p = 3Ae^x - B \stackrel{!}{=} e^x + 7$. Consequently, $A = \frac{1}{3}, B = -7$.

Hence, the general solution is $-7 + (c_1 + \frac{1}{3}x)e^x + c_2e^{-x/2}\cos\left(\frac{\sqrt{3}}{2}x\right) + c_3e^{-x/2}\sin\left(\frac{\sqrt{3}}{2}x\right)$.

Problem 5. (20 points) Consider, for x > 0, the second-order differential equation

$$y'' - \left(1 + \frac{2}{x}\right)y' + \left(\frac{1}{x} + \frac{2}{x^2}\right)y = 0.$$

- (a) Show that the functions $y_1(x) = x$ and $y_2(x) = x e^x$ are solutions to this differential equation.
- (b) Using the Wronskian, show that y_1 and y_2 are linearly independent solutions to the above differential equation.
- (c) Find, for x > 0, the general solution to the second-order differential equation

$$y'' - \left(1 + \frac{2}{x}\right)y' + \left(\frac{1}{x} + \frac{2}{x^2}\right)y = 2x.$$

Solution.

(a) We have

$$y_1'' - \left(1 + \frac{2}{x}\right)y_1' + \left(\frac{1}{x} + \frac{2}{x^2}\right)y_1 = 0 - \left(1 + \frac{2}{x}\right) + \left(\frac{1}{x} + \frac{2}{x^2}\right)x = 0,$$

and

$$y_2'' - \left(1 + \frac{2}{x}\right)y_2' + \left(\frac{1}{x} + \frac{2}{x^2}\right)y_2 = x e^x + 2e^x - \left(1 + \frac{2}{x}\right)(x e^x + e^x) + \left(\frac{1}{x} + \frac{2}{x^2}\right)(x e^x) = 0.$$

(b) The Wronskian of y_1 and y_2 is given by

$$W(x) = \det \begin{bmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{bmatrix} = \det \begin{bmatrix} x & x e^x \\ 1 & x e^x + e^x \end{bmatrix} = x^2 e^x.$$

Since $W(x) \neq 0$ on the domain of definition for the differential equation, the Wronskian theorem implies that y_1 and y_2 are linearly independent.

(c) The general solution is given by

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + y_p(x) = c_1 x + c_2 x e^x + y_p(x),$$

where y_p is any particular solution to the above non-homogeneous equation. To find such a y_p , we will use the variation of parameters formula:

$$y_p(x) = u_1(x) y_1(x) + u_2(x) y_2(x) = u_1(x) x + u_2(x) x e^x,$$

where

$$u_1(x) = -\int \frac{2x y_2(x)}{W(x)} dx = -\int 2dx = -2x,$$

$$u_2(x) = \int \frac{2x y_1(x)}{W(x)} dx = \int 2e^{-x} dx = -2e^{-x}.$$

So,

$$y(x) = c_1 x + c_2 x e^x - 2x^2 - 2x = d_1 x + d_2 x e^x - 2x^2$$

Armin Straub astraub@illinois.edu **Problem 6.** (20 points) The motion of a certain mass on a spring is described by $x'' + 2x' + 2x = 5 \sin(t)$.

- (a) What is the amplitude of the resulting steady periodic oscillations?
- (b) Assume that the mass is initially at rest (i.e. x(0) = 0, x'(0) = 0) and find the position function x(t).

Solution.

(a) The characteristic polynomial of the associated homogeneous DE has roots $\frac{-2 \pm \sqrt{4-8}}{2} = -1 \pm i$. Hence, x_{sp} is the form $x_{sp} = A_1 \cos(t) + A_2 \sin(t)$. We compute $x'_{sp} = -A_1 \sin(t) + A_2 \cos(t)$ and $x''_{sp} = -A_1 \cos(t) - A_2 \sin(t)$.

Plugging into the DE gives $x''_{sp} + 2x'_{sp} + 2x_{sp} = (A_1 + 2A_2)\cos(t) + (A_2 - 2A_1)\sin(t) \stackrel{!}{=} 5\sin(t)$. Consequently, $A_1 + 2A_2 = 0$ and $A_2 - 2A_1 = 5$, resulting in $A_1 = -2$, $A_2 = 1$.

Thus, $x_{sp} = -2\cos(t) + \sin(t)$. The amplitude is $\sqrt{(-2)^2 + 1^2} = \sqrt{5}$.

(b) From first part, we know that $x(t) = -2\cos(t) + \sin(t) + e^{-t}(c_1\cos(t) + c_2\sin(t)).$

Using $x(0) = -2 + c_1 = 0$ we find $c_1 = 2$. $x'(t) = 2\sin(t) + \cos(t) - e^{-t}(2\cos(t) + c_2\sin(t)) + e^{-t}(-2\sin(t) + c_2\cos(t))$. Hence, $x'(0) = 1 - 2 + c_2 = 0$ results in $c_2 = 1$.

In conclusion, $x(t) = -2\cos(t) + \sin(t) + e^{-t}(2\cos(t) + \sin(t)).$

Problem 7. (5 points) Let y_p be any solution to the inhomogeneous linear differential equation $y'' + xy = e^x$. Find a homogeneous linear differential equation which y_p solves. *Hint:* Do not attempt to solve the DE.

Solution. Apply $D = \frac{d}{dx}$ to both sides of the differential equation to get $y''' + xy' + y = e^x$. Subtracting the two differential equations, we get the homogeneous linear DE y''' - y'' + xy' + (1-x)y = 0.

Note that this is the same as applying D-1 to both sides of the DE, in analogy with our approach for solving inhomogeneous linear DEs with constant coefficients.]