The most exciting phrase to hear in science, the one that heralds new discoveries, is not "Eureka!" but "That's funny ...". — Isaac Asimov $(1920-1992)$ —

Problem 1. Let A be a 2×2 matrix such that $e^{At} =$ $\int (1-t)e^{2t} \, t e^{2t}$ $(-t)e^{2t}$ te^{2t} $(e+t)e^{rt}$. What are the values of c and r?

Solution. Using that $e^{At}|_{t=0} = I$, we conclude that $c = 1$. The presence of the term te^{2t} shows that 2 is a repeated eigenvalue. Since A is 2×2 and therefore has exactly 2 eigenvalues (counting with multiplicity), it follows that $r = 2$ as well.

Problem 2. Consider $x' = Ax$ where $A = \begin{pmatrix} -2 & 1 \\ -6 & 3 \end{pmatrix}$.

- (a) Find the general solution.
- (b) Find e^{At} .
- (c) Find a particular solution to $x' = Ax + \begin{pmatrix} 1/t^2 \\ 2/t^2 \end{pmatrix}$ $2/t^2$ \setminus .

Solution.

(a) The eigenvalues of A are 0,1 with eigenvectors $\boldsymbol{v} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 2) and $w = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 3 . Hence the general solution is

$$
\boldsymbol{x}(t) = c_1 \begin{pmatrix} 1 \\ 2 \end{pmatrix} + c_2 \begin{pmatrix} 1 \\ 3 \end{pmatrix} e^t.
$$

(b) From the first part, we know that a fundamental matrix is given by $\Phi(t) = \begin{pmatrix} 1 & e^t \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & e^t \\ 2 & 3e^t \end{pmatrix}$. Then

$$
e^{At} = \Phi(t)\Phi(0)^{-1} = \begin{pmatrix} 1 & e^t \\ 2 & 3e^t \end{pmatrix} \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} = \begin{pmatrix} 3 - 2e^t & -1 + e^t \\ 6 - 6e^t & -2 + 3e^t \end{pmatrix}.
$$

(c) Using variation of constants,

$$
\mathbf{x}(t) = e^{At} \int e^{-At} \left(\frac{1/t^2}{2/t^2} \right) dt
$$

\n
$$
= e^{At} \int \left(\frac{3 - 2e^{-t}}{6 - 6e^{-t}} - \frac{1 + e^{-t}}{-2 + 3e^{-t}} \right) \left(\frac{1/t^2}{2/t^2} \right) dt
$$

\n
$$
= e^{At} \int \left(\frac{1/t^2}{2/t^2} \right) dt = e^{At} \left(\frac{-1/t}{-2/t} \right)
$$

\n
$$
= \left(\frac{3 - 2e^t}{6 - 6e^t} - \frac{1 + e^t}{-2 + 3e^t} \right) \left(\frac{-1/t}{-2/t} \right) = \left(\frac{-1/t}{-2/t} \right).
$$

Armin Straub astraub@illinois.edu **Problem 3.** The mixtures in three tanks T_1, T_2, T_3 are kept uniform by stirring. Brine containing 2 lb of salt per gallon enters the first tank at 15 gal/min. Mixed solution from T_1 is pumped into T_2 at 10 gal/min and from T_2 into T_3 at 10 gal/min. Each tank initially contains 10 gal of pure water. Denote by $x_i(t)$ the amount (in pounds) of salt in tank T_i at time t (in minutes). Derive a system of linear differential equations for the x_i .

Solution. Note that at time t, T_1 contains $10 + 5t$ gal of solution. Likewise, T_2 contains 10 gal, and T_3 $10 + 10t$. Consider a short interval of time $(t, t + \Delta t)$.

$$
\Delta x_1 \approx 15 \cdot 2 \cdot \Delta t - 10 \cdot \frac{x_1}{10 + 5t} \cdot \Delta t \implies x_1' = 30 - \frac{2x_1}{2 + t}
$$

$$
\Delta x_2 \approx 10 \cdot \frac{x_1}{10 + 5t} \cdot \Delta t - 10 \cdot \frac{x_2}{10} \cdot \Delta t \implies x_2' = \frac{2x_1}{2 + t} - x_2
$$

$$
\Delta x_3 \approx 10 \cdot \frac{x_2}{10} \cdot \Delta t \implies x_3' = x_2
$$

We also have the initial conditions $x_1(0) = 0$, $x_2(0) = 0$, $x_3(0) = 0$. In matrix form, writing $\mathbf{x} = (x_1, x_2, x_3)$, this is

$$
\boldsymbol{x}' = \begin{pmatrix} -\frac{2}{2+t} & 0 & 0 \\ \frac{2}{2+t} & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix} \boldsymbol{x} + \begin{pmatrix} 30 \\ 0 \\ 0 \end{pmatrix}, \quad \boldsymbol{x}(0) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
$$

This is a system of linear inhomogeneous differential equations with non-constant coefficients (which means that we cannot apply our knowledge of eigenvectors to solve the complementary solution).

Problem 4. Let A be a 3×3 matrix such that $e^{At} =$ $\sqrt{ }$ $\overline{}$ $e^{2t} - te^{-t}$ te^{-t} $-e^{2t} + (t+1) e^{-t}$ $e^{2t} - e^{-t}$ e^{-t} $-e^{2t} + e^{-t}$ $-te^{-t}$ te^{-t} $(t+1) e^{-t}$ \setminus \cdot

- (a) What are the eigenvalues of A? Indicate if an eigenvalue is repeated and what its defect is.
- (b) Solve the initial value problem $x' = Ax$, $x(0) = (1 \ 0 \ 1)^T$.
- (c) Find a particular solution to $x' = Ax + ($ $\overline{1}$ 1 1 $\mathbf{0}$.
- (d) Find A. Also, as a challenge, find A^{100} .

Solution.

(a) The eigenvalues are $2, -1, -1$. The eigenvalue -1 is repeated and has defect 1.

(b)
$$
\boldsymbol{x}(t) = e^{At} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} e^{2t} - te^{-t} \\ e^{2t} - e^{-t} \\ -te^{-t} \end{pmatrix} + \begin{pmatrix} -e^{2t} + (t+1)e^{-t} \\ -e^{2t} + e^{-t} \\ (t+1)e^{-t} \end{pmatrix} = \begin{pmatrix} e^{-t} \\ 0 \\ e^{-t} \end{pmatrix} = e^{-t} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}.
$$

\n(c) $\boldsymbol{x}_p(t) = e^{At} \int e^{-At} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} dt = e^{At} \int \begin{pmatrix} e^{-2t} \\ e^{-2t} \\ 0 \end{pmatrix} dt = -\frac{1}{2}e^{-2t} e^{At} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = -\frac{1}{2}e^{-2t} \begin{pmatrix} e^{2t} \\ e^{2t} \\ 0 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$

Armin Straub astraub@illinois.edu (d) Recall that $\frac{d}{dt}e^{At} = Ae^{At}$. Setting $t = 0$ then gives $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\overline{1}$ $1 \quad 1 \quad -2$ $3 -1 -3$ -1 1 0 .

Our strategy to find A^{100} is to use $\frac{d^{100}}{dt^{100}}$ $\frac{d^{100}}{dt^{100}}e^{At} = A^{100} e^{At}$. Clearly, $\frac{d^{100}}{dt^{100}}$ $\frac{d^{100}}{dt^{100}}e^{2t} = 2^{100}e^{2t}$ and $\frac{d^{100}}{dt^{100}}$ $\frac{d^{100}}{dt^{100}}e^{-t} = e^{-t}$. Note that $\frac{d}{dt}(te^{-t}) = (-t + 1)e^{-t}, \frac{d^2}{dt^2}$ $rac{d^2}{dt^2}(te^{-t}) = (t - 2)e^{-t}, \frac{d^3}{dt^3}$ $\frac{d^3}{dt^3}(te^{-t}) = (-t + 3)e^{-t}$. Continuing, we find that d^n $\frac{d^n}{dt^n}(te^{-t}) = (-1)^n(t-n)e^{-t}$. In particular, $\frac{d^{100}}{dt^{100}}$ $\frac{d^{100}}{dt^{100}}(te^{-t}) = (t - 100)e^{-t}$. Therefore,

$$
\frac{\mathrm{d}^{100}}{\mathrm{d}t^{100}}e^{At} = \left(\begin{array}{ccc} 2^{100}e^{2t} - (t-100)e^{-t} & (t-100)e^{-t} & -2^{100}e^{2t} + e^{-t} + (t-100)e^{-t} \\ 2^{100}e^{2t} - e^{-t} & e^{-t} & -2^{100}e^{2t} + e^{-t} \\ -(t-100)e^{-t} & (t-100)e^{-t} & e^{-t} + (t-100)e^{-t} \end{array}\right)\!.
$$

Setting $t = 0$, we find

$$
A^{100} = \begin{pmatrix} 2^{100} + 100 & -100 & -2^{100} - 99 \\ 2^{100} - 1 & 1 & -2^{100} + 1 \\ 100 & -100 & -99 \end{pmatrix}.
$$

You should feel rightfully proud of your new powers! As you just discovered, the matrix exponential makes it possible to easily computer any power of a matrix (ours was a hard case because of the terms $te^{\lambda t}$ due to a defective eigenvalue; usually taking derivatives requires no thinking). \Box

Problem 5. The 6×6 matrix A has eigenvalues $-3, -3, 0, 1, 1, 1$.

- (a) Which eigenvalues can be defective? Briefly describe in *all* possible scenarios what sort of (generalized) eigenvectors would arise, and what form the solutions take in each case.
- (b) We wish to solve $x' = Ax + (2t^2, e^{-2t}\sin(t), 0, -1, 0, t\cos(t))$ ^T. Write down a particular solution x_p with undetermined coefficients. It should have as few terms as possible and still work for any matrix A with the stated eigenvalues.

Solution.

(a) The eigenvalues $\lambda = -3$ and $\lambda = 1$ might be defective. $\lambda = -3$ may have no defect or defect 1. $\lambda = 1$ may have no defect or defect 1 or defect 2. We describe the possibilities individually.

 $\lambda = -3$ **no defect.** In this case, we find two (independent) eigenvectors for $\lambda = -3$.

 $\lambda = -3$ defect 1. There is one chain v_1, v_2 of generalized eigenvectors for $\lambda = -3$.

 $\lambda = 1$ **no defect.** Three (independent) eigenvectors for $\lambda = 1$.

 $\lambda = 1$ defect 1. There is one chain v_1 , v_2 of generalized eigenvectors for $\lambda = 1$, as well as a second (independent) eigenvector w for $\lambda = 1$.

 $\lambda = 1$ defect 2. One chain v_1, v_2, v_3 of generalized eigenvectors for $\lambda = 1$.

(b) There is a particular solution x_p of the form

$$
x_p(t) = (a_1t^3 + a_2t^2 + a_3t + a_4) + b_1e^{-2t}\sin(t) + b_2e^{-2t}\cos(t) + (c_1t + c_2)\cos(t) + (d_1t + d_2)\sin(t).
$$

Note that this is $10 \times 6 = 60$ undeterminates. Let's keep our theoretical attitude...

Problem 6. Consider $x' = Ax$ where $A = \begin{pmatrix} 1 & 0 \\ 0 & x \end{pmatrix}$ $\overline{1}$ $2 \t 4 \t -1$ $7 -1 -5$ -1 1 -1 .

- (a) Find a fundamental matrix. *Hint:* The eigenvalues of A are −3, −3, 6.
- (b) Solve the initial value problem with $\boldsymbol{x}(0) = (3 \ 0 \ 0)^T$.

Solution.

(a) The eigenvalues of A are $-3, -3, 6$.

For $\lambda = 6$ we find the eigenvector $\mathbf{v} = (1 \ 1 \ 0)^T$.

For $\lambda = -3$ we find the eigenvector $\mathbf{w}_1 = (1 \ -1 \ 1)^T$ but no second one. $\lambda = -3$ thus has defect 1.

Therefore there has to be a chain of length 2.

We solve $\Big($ $\overline{1}$ 5 4 −1 7 2 −5 −1 1 2 $\Big) w_2\!=\!\Big($ \mathcal{L} $\frac{1}{-1}$ 1 and find, for instance, $w_2 = \left($ \mathcal{L} 0 1/3 1/3 . Fundamental matrix: $\Phi(t) =$ $\sqrt{2}$ $\overline{\mathcal{L}}$ e^{6t} e^{-3t} te^{-3t} $e^{6t} -e^{-3t} (1/3-t)e^{-3t}$ 0 e^{-3t} $(1/3 + t)e^{-3t}$ \setminus \cdot

(b) We need to find **c** such that $x(t) = \Phi(t)$ **c** satisfies $x(0) = (3 \ 0 \ 0)^T$.

$$
\boldsymbol{x}(0) = \Phi(0)\boldsymbol{c} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1/3 \\ 0 & 1 & 1/3 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}.
$$
 We solve and find $\boldsymbol{c} = \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}$.
\nHence
$$
\boldsymbol{x}(t) = \begin{pmatrix} 2e^{6t} + (1-3t)e^{-3t} \\ 2e^{6t} - (2-3t)e^{-3t} \\ -3te^{-3t} \end{pmatrix}.
$$

Problem 7. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ \mathcal{L} $2 \t 0 \t -1$ 0 2 0 0 1 2 .

(a) Show that the matrix $N = \left(\begin{array}{c} 1 \end{array} \right)$ $\overline{1}$ $0 \t 0 \t -1$ 0 0 0 0 1 0 is nilpotent.

- (b) Use the fact that N is nilpotent, to find e^{At} .
- (c) Solve the initial value problem $x' = Ax$, $x(0) = (1 \ 2 \ 3)^T$.
- (d) Find a particular solution of $x' = Ax +$ $\overline{ }$ e^{2t} $-e^t$ 0 Τ \cdot
- (e) Use a different method to solve the previous problem.

Solution.

- (a) We compute $N^2 = \left(\begin{array}{c} 1 \end{array} \right)$ $\overline{1}$ $0 -1 0$ 0 0 0 0 0 0 and $N^3 = 0$.
- (b) Note that $At = 2It + Nt$. Since the matrices 2It and Nt commute (why?!), we have

$$
e^{At} = e^{2It}e^{Nt} = \begin{pmatrix} e^{2t} \\ e^{2t} \\ e^{2t} \end{pmatrix} \begin{bmatrix} I + Nt + \frac{1}{2}(Nt)^2 \end{bmatrix}
$$

= $e^{2t} \begin{bmatrix} I + \begin{pmatrix} 0 & 0 & -t \\ 0 & 0 & 0 \\ 0 & t & 0 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 0 & -t^2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & -t^2/2 & -t \\ 0 & 1 & 0 \\ 0 & t & 1 \end{pmatrix} e^{2t}.$

Armin Straub astraub@illinois.edu

(c) This is easy now!
$$
\boldsymbol{x}(t) = e^{At} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 - 3t - t^2 \\ 2 \\ 3 + 2t \end{pmatrix} e^{2t}.
$$

(d) Using variation of constants, a particular solution is

$$
\mathbf{x}_p(t) = e^{At} \int e^{-At} \begin{pmatrix} e^{2t} \\ -e^t \\ 0 \end{pmatrix} dt = e^{At} \int \begin{pmatrix} 1 & -t^2/2 & t \\ 0 & 1 & 0 \\ 0 & -t & 1 \end{pmatrix} e^{-2t} \begin{pmatrix} e^{2t} \\ -e^t \\ 0 \end{pmatrix} dt = e^{At} \int \begin{pmatrix} 1 + t^2/2e^{-t} \\ -e^{-t} \\ te^{-t} \end{pmatrix} dt
$$

$$
= \begin{pmatrix} 1 & -t^2/2 & -t \\ 0 & 1 & 0 \\ 0 & t & 1 \end{pmatrix} e^{2t} \begin{pmatrix} t - t^2/2e^{-t} - te^{-t} - e^{-t} \\ e^{-t} \\ -te^{-t} - e^{-t} \end{pmatrix} = \begin{pmatrix} te^{2t} - e^t \\ e^t \\ -e^t \\ -e^t \end{pmatrix}.
$$

(e) Let us use undetermined coefficients. From e^{At} we know that A has eigenvalues 2, 2, 2. Let us split the problem into two parts: $x' = Ax + e^t(0, -1, 0)^T$ and $x' = Ax + e^{2t}(1, 0, 0)^T$.

For the first part, we look for a solution of the form $x_p = ae^t$. Plugging into the DE, we get

$$
x'=ae^t\stackrel{!}{=}Ax+f=Aae^t+e^t\left(\begin{array}{c}0\\-1\\0\end{array}\right) \iff (A-I)a=\left(\begin{array}{ccc}1&0&-1\\0&1&0\\0&1&1\end{array}\right)a=\left(\begin{array}{c}0\\1\\0\end{array}\right) \iff a=\left(\begin{array}{c}-1\\1\\-1\end{array}\right).
$$

In the other case, severe duplication occurs. We know that, in the worst case, there is a solution x_p of the form $x_p = (a + bt + ct^2 + dt^3)e^{2t}$. For practical purposes, and when working by hand, it still makes sense to first look if there exists a simpler solution $x_p = ae^{2t}$ before adding a power of t each time we find no solution.

$$
x'=2ae^{2t}\stackrel{!}{=}Ax+f=Aae^{2t}+e^{2t}\begin{pmatrix}1\\0\\0\end{pmatrix}\iff (A-2I)a=\begin{pmatrix}0&0&-1\\0&0&0\\0&1&0\end{pmatrix}a=\begin{pmatrix}-1\\0\\0\end{pmatrix}\iff a=\begin{pmatrix}c\\0\\1\end{pmatrix}.
$$

We are lucky and have already found a solution (we can set c to anything, for instance $c = 0$)!

Combining, we have the particular solution (of the original problem) $x_p = ($ \mathcal{L} −1 $\frac{1}{-1}$ $\Big) e^t + \Big($ $\overline{1}$ 0 $\mathbf{0}$ 1 $\Bigg)e^{2t} = \Bigg($ \mathcal{L} $-e^t$ e^t $e^{2t}-e^t$ Τ \cdot

Note that this looks rather different from the solution found in the previous problem. This is explained by

$$
\begin{pmatrix} -e^t \\ e^t \\ e^{2t} - e^t \end{pmatrix} = \begin{pmatrix} te^{2t} - e^t \\ e^t \\ -e^t \end{pmatrix} + \begin{pmatrix} -te^{2t} \\ 0 \\ e^{2t} \end{pmatrix}, \quad \text{with } \begin{pmatrix} -te^{2t} \\ 0 \\ e^{2t} \end{pmatrix} = e^{At} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ a solution of } \mathbf{x}' = A\mathbf{x}.
$$

Problem 8. Find the general solution of

$$
\mathbf{x}' = \left(\begin{array}{rrr} 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{array}\right) \mathbf{x}.
$$

You may use that the characteristic polynomial has the repeated roots $1 \pm i$. The general solution should be given in terms of real-valued functions.

Solution. Let us find the eigenvectors for the eigenvalue $\lambda = 1 - i$.

i 1 −1 0 0 0 i 0 −1 0 1 0 i 1 0 0 1 0 i 0 r3==r3+ir¹ i 1 −1 0 0 0 i 0 −1 0 0 i 0 1 0 0 1 0 i 0 r3=r3−r² r4=r4+ir² i 1 −1 0 0 0 i 0 −1 0 0 0 0 2 0 0 0 0 0 0 v = c 0 ic 0

Let us choose $c = 1$. There was only one degree of freedom, so the defect of λ is 1. We have to construct a chain starting with $v_1 = (1, 0, i, 0)^T$. We extend the above elimination:

 c i 1 −1 0 0 1 i 1 −1 0 0 1 i 1 −1 0 0 1 r3=r3−r² 0 i 0 −1 0 0 r3==r3+ir¹ 0 i 0 −1 0 0 r4=r4+ir² 0 i 0 −1 0 0 1 v² = 1 0 i 1 0 i 0 i 0 1 0 2i 0 0 0 2 0 2i ic 0 1 0 i 0 0 0 1 0 i 0 0 0 0 0 0 0 0 i

We again choose $c = 0$. Summarizingly, we found the two complex solutions

$$
\boldsymbol{x}_1 = \begin{pmatrix} 1 \\ 0 \\ i \\ 0 \end{pmatrix} e^{(1-i)t}, \quad \boldsymbol{x}_2 = \begin{bmatrix} 1 \\ 0 \\ i \\ 0 \end{bmatrix} t + \begin{pmatrix} 0 \\ 1 \\ 0 \\ i \end{pmatrix} e^{(1-i)t} = \begin{pmatrix} t \\ 1 \\ it \\ i \end{pmatrix} e^{(1-i)t}.
$$

(Together with their conjugates, we actually have four independent solutions). By taking real and imaginary parts $(\text{recall that } e^{(1-i)t} = e^t(\cos(t) - i\sin(t))),$ we conclude that four independent real solutions are given by

$$
\text{Re}(\boldsymbol{x}_1) = e^t \begin{pmatrix} \cos(t) \\ 0 \\ \sin(t) \\ 0 \end{pmatrix}, \quad \text{Im}(\boldsymbol{x}_1) = e^t \begin{pmatrix} -\sin(t) \\ 0 \\ \cos(t) \\ 0 \end{pmatrix}, \quad \text{Re}(\boldsymbol{x}_2) = e^t \begin{pmatrix} t\cos(t) \\ \cos(t) \\ t\sin(t) \\ \sin(t) \end{pmatrix}, \quad \text{Im}(\boldsymbol{x}_2) = e^t \begin{pmatrix} -t\sin(t) \\ -\sin(t) \\ t\cos(t) \\ \cos(t) \end{pmatrix}.
$$