The most exciting phrase to hear in science, the one that heralds new discoveries, is not "Eureka!" but "That's funny ...". — Isaac Asimov (1920–1992) —

Problem 1. Let A be a 2×2 matrix such that $e^{At} = \begin{pmatrix} (1-t)e^{2t} & te^{2t} \\ -te^{2t} & (c+t)e^{rt} \end{pmatrix}$. What are the values of c and r?

Problem 2. Consider x' = Ax where $A = \begin{pmatrix} -2 & 1 \\ -6 & 3 \end{pmatrix}$.

- (a) Find the general solution.
- (b) Find e^{At} .
- (c) Find a particular solution to $\mathbf{x}' = A\mathbf{x} + \begin{pmatrix} 1/t^2 \\ 2/t^2 \end{pmatrix}$.

Problem 3. The mixtures in three tanks T_1 , T_2 , T_3 are kept uniform by stirring. Brine containing 2 lb of salt per gallon enters the first tank at 15 gal/min. Mixed solution from T_1 is pumped into T_2 at 10 gal/min and from T_2 into T_3 at 10 gal/min. Each tank initially contains 10 gal of pure water. Denote by $x_i(t)$ the amount (in pounds) of salt in tank T_i at time t (in minutes). Derive a system of linear differential equations for the x_i .

Problem 4. Let A be a
$$3 \times 3$$
 matrix such that $e^{At} = \begin{pmatrix} e^{2t} - te^{-t} & te^{-t} & -e^{2t} + (t+1)e^{-t} \\ e^{2t} - e^{-t} & e^{-t} & -e^{2t} + e^{-t} \\ -te^{-t} & te^{-t} & (t+1)e^{-t} \end{pmatrix}$.

- (a) What are the eigenvalues of A? Indicate if an eigenvalue is repeated and what its defect is.
- (b) Solve the initial value problem $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = (1 \ 0 \ 1)^T$.
- (c) Find a particular solution to $\mathbf{x'} = A\mathbf{x} + \begin{pmatrix} 1\\ 1\\ 0 \end{pmatrix}$.
- (d) Find A. Also, as a challenge, find A^{100} .

Problem 5. The 6×6 matrix A has eigenvalues -3, -3, 0, 1, 1, 1.

- (a) Which eigenvalues can be defective? Briefly describe in *all* possible scenarios what sort of (generalized) eigenvectors would arise, and what form the solutions take in each case.
- (b) We wish to solve $\mathbf{x}' = A\mathbf{x} + (2t^2, e^{-2t}\sin(t), 0, -1, 0, t\cos(t))^T$. Write down a particular solution \mathbf{x}_p with undetermined coefficients. It should have as few terms as possible and still work for any matrix A with the stated eigenvalues.

Problem 6. Consider x' = Ax where $A = \begin{pmatrix} 2 & 4 & -1 \\ 7 & -1 & -5 \\ -1 & 1 & -1 \end{pmatrix}$.

- (a) Find a fundamental matrix.
- (b) Solve the initial value problem with $\boldsymbol{x}(0) = (\begin{array}{ccc} 3 & 0 & 0 \end{array})^T$.

Problem 7. Let $A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$.

- (a) Show that the matrix $N = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ is nilpotent.
- (b) Use the fact that N is nilpotent, to find e^{At} .
- (c) Solve the initial value problem $\mathbf{x}' = A\mathbf{x}$, $\mathbf{x}(0) = (1 \ 2 \ 3)^T$.
- (d) Find a particular solution of $\boldsymbol{x}' = A\boldsymbol{x} + \begin{pmatrix} e^{2t} \\ -e^t \\ 0 \end{pmatrix}$.
- (e) Use a different method to solve the previous problem.

Problem 8. Find the general solution of

$$\boldsymbol{x}' = \begin{pmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix} \boldsymbol{x}.$$

You may use that the characteristic polynomial has the repeated roots $1 \pm i$. The general solution should be given in terms of real-valued functions.

Hint: The eigenvalues of A are -3, -3, 6.