
Final Exam � Practice MATH 332 � Di�erential Equations II
Tuesday, Dec 10

Please print your name:

Bonus challenge. Let me know about any typos you spot in the posted solutions (or lecture sketches). Any typo,
that is not yet �xed by the time you send it to me, is worth a bonus point.

Problem 1. Find all eigenfunctions and eigenvalues of

y 00+�y=0; y 0(0)= 0; y 0(3)=0:

Solution. To solve this eigenvalue problem, we distinguish three cases:

�< 0. Then, the roots are the real numbers�r=� ¡�
p

and the general solution to the DE is y(x)=Aerx+Be¡rx.
Then y 0(0)=Ar¡Br=0 implies B=A, so that y 0(3)=A(3e3r¡ 3e¡3r). Since 3e3r¡ 3e¡3r=0 only if r=0,
we see that y 0(3)= 0 only if A=0. So there is no solution for �< 0.

�=0. Now, the general solution to the DE is y(x) =A+Bx. Then y 0(x) =B and we see that y 0(0) = 0 and
y 0(3)= 0 if and only if B=0. It follows that �=0 is an eigenvalue with corresponding eigenfunction y(x) = 1
(or any other constant multiple).

�> 0. Now, the roots are �i �
p

and y(x) = A cos( �
p

x) + B sin( �
p

x). Hence, y 0(x) = ¡A �
p

sin( �
p

x) +

B �
p

cos( �
p

x). y 0(0)=B �
p

=0 implies B =0. Then, y 0(3) =¡A �
p

sin(3 �
p

) = 0 if and only if sin(3 �
p

) =

0. The latter is true if and only if 3 �
p

=n� for some integer n. In that case, �=
¡ n�
3

�2
and y(x)= cos

¡ n�
3
x
�
.

In summary, this means that the eigenvalues are �=
¡ n�
3

�2
, with n=0; 1; 2; ::: (why did we include n=0 but excluded

n=¡1;¡2; :::?!) with corresponding eigenfunctions y(x) = cos
¡ n�
3
x
�
.

Note. Note that the case n=0 corresponds to the eigenvalue �=0 (with eigenfunction y(x) =1).

Comment. There was nothing special about 3. Likewise, we �nd that

y 00+�y=0; y 0(0)= 0; y 0(L)= 0

has eigenvalues eigenvalues are �=
¡ n�
L

�2
, with n=0; 1; 2; ::: with corresponding eigenfunctions y(x)= cos

¡ n�
L
x
�
. �

Problem 2. Find the solution u(x; t), for 0<x< 3 and t> 0, to the heat conduction problem

ut=5uxx; ux(0; t) =ux(3; t)= 0; u(x; 0)= 7+4cos(�x):

Derive your solution using separation of variables (at some step you may refer to the previous problem).

Solution.

� Using separation of variables, we look for solutions u(x;t)=X(x)T (t). Plugging into the PDE, we getX(x)T 0(t)=
5X 00(x)T (t), and so X 00(x)

X(x)
=

T 0(t)

5T (t)
= const=:¡�. We thus have X 00+�X =0 and T 0+5�T =0.

� ux(0; t) =X 0(0)T (t)= 0 implies X 0(0)= 0. Likewise, ux(3; t) =X 0(3)T (t) =0 implies X 0(3)= 0.

� So X solves X 00+ �X = 0, X 0(0) = 0, X 0(3) = 0. From the previous problem, we know that, up to multiples,
the only nonzero solutions of this eigenvalue problem are X(x) = cos

¡ n�
3
x
�
corresponding to �=

¡ n�
3

�2
, n=0;

1; 2; 3:::.
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� T solves T 0+5�T =0, and hence, up to multiples, T (t) = e¡5�t= e
¡5

9
�2n2t.

� Taken together, we have the solutions un(x; t)= e
¡5

9
�2n2tcos

¡ n�
3
x
�
solving ut=5uxx and ux(0; t)=ux(3; t)= 0.

Note that un(x; 0)= cos
¡ n�
3
x
�
. In particular, our heat conduction problem is solved by

u(x; t)= 7u0(x; t) +4u3(x; t)= 7+4e¡5�
2tcos(�x): �

Problem 3. Find the solution u(x; t), for 0<x< 3 and t> 0, to the heat conduction problem

2ut=uxx; ux(0; t) =0; u(3; t)= 0; u(x; 0)= 2cos
�
�x
2

�
+7cos

�
3�x
2

�
:

Derive your solution using separation of variables (at some step you may refer to the EVP on the practice problems
for the second midterm).

Solution.

� Using separation of variables, we look for solutions u(x; t) = X(x)T (t). Plugging into the PDE, we get
2X(x)T 0(t)=X 00(x)T (t), and so X 00(x)

X(x)
=

2T 0(t)

T (t)
= const=:¡�. We thus have X 00+�X =0 and 2T 0+�T =0.

� ux(0; t) =X 0(0)T (t)= 0 implies X 0(0)= 0. Likewise, u(3; t) =X(3)T (t) =0 implies X(3)= 0.

� So X solves X 00+ �X = 0, X 0(0) = 0, X(3) = 0. From Problem 11 from the practice problems for the second
midterm, we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are X(x) =

cos
�
(2n+1)�

6
x
�
corresponding to �=

�
(2n+1)�

6

�2
, n=0; 1; 2; 3:::.

� T solves 2T 0+�T =0, and hence, up to multiples, T (t) = e
¡1

2
�t
= e

¡1

2

�
(2n+1)�

6

�2
t
.

� Taken together, we have the solutions un(x; t) = e
¡1

2

�
(2n+1)�

6

�2
t
cos

�
(2n+1)�

6
x
�
solving 2ut = uxx and ux(0;

t)=u(3; t)= 0.

Note that un(x; 0)= cos
�
(2n+1)�

6
x
�
. In particular, our heat conduction problem is solved by

u(x; t)= 2u1(x; t) +7u4(x; t)= 2e
¡1

8
�2tcos

�
�x
2

�
+7e

¡9

8
�2tcos

�
3�x
2

�
:

Comment. It is not obvious that every initial temperature distribution f(x) can be written as an (in�nite) super-
position of the un(x; 0). However, such �eigenfunction expansions� are always possible (thus extending what we know
about ordinary Fourier series). �

Problem 4. For t> 0 and x2 [0; 4], consider the heat �ow problem:

ut = 2uxx+ e¡x/2

ux(0; t) = 3
u(4; t) = ¡2
u(x; 0) = f(x)

Determine the steady-state solution and spell out equations characterizing the transient solution.

Solution. We look for a solution of the form u(x; t)= v(x)+w(x; t), where v(x) is the steady-state solution and the
transient solution w(x; t) (as well as its derivatives) tend to zero as t!1.

� Plugging into (PDE), we get wt=2v 00+2wxx+ e¡x/2. Letting t!1, this becomes 0= 2v 00+ e¡x/2.
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� Plugging into (BC), we get wx(0; t)+ v 0(0)= 3 and w(4; t) + v(4)=¡2.

Letting t!1, these become v 0(0)= 3 and v(4)=¡2.

� Solving 0= 2v 00+ e¡x/2, we �nd

v(x)=

ZZ
¡1
2
e¡x/2dxdx=

Z
e¡x/2dx+C =¡2e¡x/2+Cx+D:

The boundary conditions v 0(0)=3 and v(4)=¡2 imply C =2 and ¡2e¡2+8+D=¡2.

and therefore the steady-state solution v(x)=¡2e¡x/2+2x¡ 10+2e¡2.

On the other hand, the transient solution w(x; t) is characterized as the unique solution to:

wt=2wxx
wx(0; t) =0; w(4; t)= 0
w(x; 0)= f(x)¡ v(x)

Note. We know how to solve this homogeneous heat equation (see previous problem) using separation of variables. �

Problem 5. Find the solution u(x; y), for 0<x< 3 and 0< y < 2, to

uxx+uyy=0; u(x; 0)= 0; u(x; 2)= 0; u(0; y) = sin(�y) +2sin(7�y); u(3; y)= 0:

Derive your solution using separation of variables.

Solution.

� We look for solutions u(x; y)=X(x)Y (y).

Plugging into (PDE), we get X 00(x)Y (y)+X(x)Y 00(y), and so X 00(x)

X(x)
=¡Y 00(y)

Y (y)
= const :=¡�.

We thus have X 00+�X =0 and Y 00¡�Y =0.

� The three homogeneous (BC) translate into Y (0)= 0, Y (2)= 0, X(3)= 0.

� So Y solves Y 00¡�Y =0, Y (0)= 0, Y (2)= 0.

From earlier, we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are Y (y) =
sin

¡ �n
2
y
�
corresponding to ¡�=

¡ �n
2

�2
, n=1; 2; 3:::.

� On the other hand, X solves X 00+�X =0, and hence X(x)=Ae ¡�
p

x+Be¡ ¡�
p

x=Ae
�n

2
x
+Be

¡�n

2
x.

The condition X(3)= 0 implies that Ae3�n/2+Be¡3�n/2=0 so that B=¡Ae3�n.

Hence, X(x)=A
¡
e
�n

3
x¡ e3�n e¡

�n

3
x�.

� Taken together, we have the solutions un(x; y) =
¡
e
�n

3
x¡ e3�ne¡

�n

3
x�sin¡ �n

2
y
�
solving (PDE)+(BC), with the

exception of u(0; y) = sin(�y) +2sin(7�y).

� At x=0, un(0; y)= (1¡ e3�n)sin
¡ �n
2
y
�
.

Consequently, taking the proper combination of u2(x; y) and u14(x; y), (PDE)+(BC)+(IC) is solved by

u(x; y) =
1

1¡ e6� u2(x; y)+
2

1¡ e42� u14(x; y)

=
e2�x/3¡ e6�e¡2�x/3

1¡ e6� sin(�y)+ 2
e14�x/3¡ e42�e¡14�x/3

1¡ e42� sin(7�y)

�
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