A crash course in linear algebra

Example 6. A typical 2×3 matrix is $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. It is composed of column vectors like $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and row vectors like $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$. Matrices (and vectors) of the same dimensions can be added and multiplied by a scalar:

- [1 2 3] [1 0 2] [2 2 5] [1 2 3] [3 6 9]

For instance, $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 2 \\ 2 & 3 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 5 \\ 6 & 8 & 5 \end{bmatrix}$ or $3 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{bmatrix}$.

Remark. More generally, a **vector space** is an abstraction of a collection of objects that can be added and scaled: numbers, lists of numbers (like the above row and column vectors), arrays of numbers (like the above matrices), arrows, functions, polynomials, differential operators, solutions to homogeneous linear differential equations, ...

Example 7. The **transpose** A^T of A is obtained by interchanging roles of rows and columns. For instance. $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}^T = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$

Example 8. Matrices of appropriate dimensions can also be **multiplied**.

This is based on the multiplication $\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1y_1 + x_2y_2 + x_3y_3$ of row and column vectors. For instance. $\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 2 & -2 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 7 & -5 \end{bmatrix}$

In general, we can multiply a $m \times n$ matrix A with a $n \times r$ matrix B to get a $m \times r$ matrix AB.

Its entry in row *i* and column *j* is defined to be $(AB)_{ij} = (\text{row } i \text{ of } A) \begin{bmatrix} \text{column} \\ j \\ \text{of } B \end{bmatrix}$.

Comment. One way to think about the multiplication Ax is that the resulting vector is a linear combination of the columns of A with coefficients from x. Similarly, we can think of $x^T A$ as a combination of the rows of A.

Some nice properties of matrix multiplication are:

- There is an $n \times n$ identity matrix I (all entries are zero except the diagonal ones which are 1). It satisfies AI = A and IA = A.
- The associative law A(BC) = (AB)C holds. Hence, we can write ABC without ambiguity.
- The distributive laws including A(B+C) = AB + AC hold.

Example 9. $\begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \neq \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$, so we have no commutative law.

Example 10. $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

On the RHS we have the **identity matrix**, usually denoted *I* or I_2 (since it's the 2×2 identity matrix here). Hence, the two matrices on the left are inverses of each other: $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, $\begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$.

The inverse A^{-1} of a matrix A is characterized by $A^{-1}A = I$ and $AA^{-1} = I$.

Example 11. The following formula immediately gives us the inverse of a 2×2 matrix (if it exists). It is worth remembering!

$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} $ provided that $ad - bc \neq 0$			
Let's check that! $\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \frac{1}{ad-bc} \begin{bmatrix} ad-bc & 0 \\ 0 & -cb+ad \end{bmatrix} = I_2$			
In particular, a 2 × 2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is invertible $\iff ad - bc \neq 0$.			
Recall that this is the determinant : $det\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = ad - bc$.			
$det(A) = 0 \iff A \text{ is not invertible}$			

Example 12. The system $\begin{array}{c} 7x_1 - 2x_2 = 3\\ 2x_1 + x_2 = 4 \end{array}$ is equivalent to $\begin{bmatrix} 7 & -2\\ 2 & 1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} 3\\ 4 \end{bmatrix}$. Solve it. **Solution**. Multiplying (from the left!) by $\begin{bmatrix} 7 & -2\\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{11} \begin{bmatrix} 1 & 2\\ -2 & 7 \end{bmatrix}$ produces $\begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 1 & 2\\ -2 & 7 \end{bmatrix} \begin{bmatrix} 3\\ 4 \end{bmatrix} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$, which gives the solution of the original equations.

The **determinant** of A, written as det(A) or |A|, is a number with the property that:

 $det(A) \neq 0 \iff A \text{ is invertible}$ $\iff A\mathbf{x} = \mathbf{b} \text{ has a (unique) solution } \mathbf{x} \text{ (for all } \mathbf{b})$ $\iff A\mathbf{x} = 0 \text{ is only solved by } \mathbf{x} = 0$

Example 13. det $\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = ad - bc$, which appeared in the formula for the inverse.

Example 14. (extra) $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 14 \end{bmatrix}$ w	whereas $\begin{bmatrix} 1\\2\\3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}.$
---	---	--

Review: Linear DEs

The most general first-order linear DE is y' = a(x)y + f(x).

We will recall next time that we can always solve it.

The corresponding **homogeneous** linear DE is y' = a(x)y.

Important comment. Write $D = \frac{d}{dx}$. Then we can write y' - a(x)y = f(x) as Ly = f(x) where L = D - a(x). The corresponding homogeneous DE is simply Ly = 0. More next time!