Solving linear recurrences with constant coefficients

Motivation: Fibonacci numbers

The numbers $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$ are called **Fibonacci numbers**.

They are defined by the recursion $F_{n+1} = F_n + F_{n-1}$ and $F_0 = 0$, $F_1 = 1$.

How fast are they growing?

Have a look at ratios of Fibonacci numbers: $\frac{2}{1} = 2$, $\frac{3}{2} = 1.5$, $\frac{5}{3} = 1.6$, $\frac{13}{8} = 1.625$, $\frac{21}{13} = 1.615$, $\frac{34}{21} = 1.619$, ...

These ratios approach the golden ratio $\varphi = \frac{1 + \sqrt{5}}{2} = 1.618...$

In other words, it appears that $\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{1 + \sqrt{5}}{2}$. This indeed follows from Theorem 47 below.

We can derive all of that using the same ideas as in the case of linear differential equations. The crucial observation that we can write the recursion in operator form:

 $F_{n+1} = F_n + F_{n-1}$ is equivalent to $(N^2 - N - 1)F_n = 0.$ Here, N is the shift operator: $Na_n = a_{n+1}.$

Comment. Recurrence equations are discrete analogs of differential equations. For instance, recall that $f'(x) \approx f(x+1) - f(x)$ so that D is approximated by N-1.

Example 44. Find the general solution to the recursion $a_{n+1} = 7a_n$.

Solution. Note that $a_n = 7a_{n-1} = 7 \cdot 7a_{n-2} = \dots = 7^n a_0$. Hence, the general solution is $a_n = C \cdot 7^n$. **Comment.** This is analogous to y' = 7y having the general solution $y(x) = Ce^{7x}$.

Example 45. Find the general solution to the recursion $a_{n+2} = a_{n+1} + 6a_n$.

Solution. The recursion can be written as $p(N)a_n = 0$ where $p(N) = N^2 - N - 6 = (N - 3)(N + 2)$. Since $(N - 3)a_n = 0$ has solution $a_n = C \cdot 3^n$, and since $(N + 2)a_n = 0$ has solution $a_n = C \cdot (-2)^n$ (compare previous example), we conclude that the general solution is $a_n = C_1 \cdot 3^n + C_2 \cdot (-2)^n$.

Comment. This must indeed be the general solution, because the two degrees of freedom C_1, C_2 allow us to match any initial conditions $a_0 = A$, $a_1 = B$: the two equations $C_1 + C_2 = A$ and $3C_1 - 2C_2 = B$ in matrix form are $\begin{bmatrix} 1 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = \begin{bmatrix} A \\ B \end{bmatrix}$, which always has a (unique) solution because $det\left(\begin{bmatrix} 1 & 1 \\ 3 & -2 \end{bmatrix}\right) = -5 \neq 0$.

Example 46. Find the general solution to the recursion $a_{n+3} = 2a_{n+2} + a_{n+1} - 2a_n$.

Solution. The recursion can be written as $p(N)a_n = 0$ where $p(N) = N^3 - 2N^2 - N + 2$ has roots 2, 1, -1. Hence, the general solution is $a_n = C_1 \cdot 2^n + C_2 + C_3 \cdot (-1)^n$. Theorem 47. (Binet's formula) $F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$

Proof. The recursion $F_{n+1} = F_n + F_{n-1}$ can be written as $p(N)a_n = 0$ where $p(N) = N^2 - N - 1$ has roots

$$\lambda_1 = \frac{1 + \sqrt{5}}{2} \approx 1.618, \quad \lambda_2 = \frac{1 - \sqrt{5}}{2} \approx -0.618.$$

Hence, $F_n = C_1 \cdot \lambda_1^n + C_2 \cdot \lambda_2^n$ and we only need to figure out the two unknowns C_1 , C_2 . We can do that using the two initial conditions: $F_0 = C_1 + C_2 \stackrel{!}{=} 0$, $F_1 = C_1 \cdot \frac{1 + \sqrt{5}}{2} + C_2 \cdot \frac{1 - \sqrt{5}}{2} \stackrel{!}{=} 1$.

Solving, we find
$$C_1 = \frac{1}{\sqrt{5}}$$
 and $C_2 = -\frac{1}{\sqrt{5}}$ so that, in conclusion, $F_n = \frac{1}{\sqrt{5}}(\lambda_1^n - \lambda_2^n)$, as claimed.

Comment. For large n, $F_n \approx \frac{1}{\sqrt{5}} \lambda_1^n$ (because λ_2^n becomes very small). In fact, $F_n = \text{round}\left(\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n\right)$. **Back to the quotient of Fibonacci numbers.** In particular, because λ_1^n dominates λ_2^n , it is now transparent that the ratios $\frac{F_{n+1}}{F_n}$ approach $\lambda_1 = \frac{1+\sqrt{5}}{2} \approx 1.618$. To be precise, note that

$$\frac{F_{n+1}}{F_n} = \frac{\frac{1}{\sqrt{5}} (\lambda_1^{n+1} - \lambda_2^{n+1})}{\frac{1}{\sqrt{5}} (\lambda_1^n - \lambda_2^n)} = \frac{\lambda_1^{n+1} - \lambda_2^{n+1}}{\lambda_1^n - \lambda_2^n} = \frac{\lambda_1 - \lambda_2 \left(\frac{\lambda_2}{\lambda_1}\right)^n}{1 - \left(\frac{\lambda_2}{\lambda_1}\right)^n} \xrightarrow{n \to \infty} \frac{\lambda_1 - 0}{1 - 0} = \lambda_1.$$

In fact, it follows from $\lambda_2 < 0$ that the ratios $\frac{F_{n+1}}{F_n}$ approach λ_1 in the alternating fashion that we observed numerically earlier. Can you see that?

Example 48. Find the general solution to the recursion $a_{n+2} = 4a_{n+1} - 4a_n$.

Solution. The recursion can be written as $p(N)a_n = 0$ where $p(N) = N^2 - 4N + 4$ has roots 2, 2. So one solution is 2^n and, from our discussion of DEs, it is probably not surprising that a second solution is $n \cdot 2^n$. Hence, the general solution is $a_n = C_1 \cdot 2^n + C_2 \cdot n \cdot 2^n = (C_1 + C_2 n) \cdot 2^n$. Comment. This is analogous to $(D-2)^2 y' = 0$ having the general solution $y(x) = (C_1 + C_2 x)e^{2x}$. Check! Let's check that $a_n = n \cdot 2^n$ indeed satisfies the recursion $(N-2)^2 a_n = 0$. $(N-2)n \cdot 2^n = (n+1)2^{n+1} - 2n \cdot 2^n = 2^{n+1}$, so that $(N-2)^2n \cdot 2^n = (N-2)2^{n+1} = 0$.

Combined, we obtain the following analog of Theorem 25 for recurrence equations (RE): Solutions to such recurrences are called C-finite sequences.

Theorem 49. Consider the homogeneous linear RE with constant coefficients $p(N)a_n = 0$.

- If r is a root of the characteristic polynomial and if k is its multiplicity, then k (independent) solutions of the RE are given by $n^{j}r^{n}$ for j = 0, 1, ..., k 1.
- Combining these solutions for all roots, gives the general solution.

Moreover. $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$ equals the largest root r that contributes to a_n .

Example 50. (homework) Consider the sequence a_n defined by $a_{n+2}=2a_{n+1}+4a_n$ and $a_0=0$, $a_1=1$. Determine $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$.

First few terms of sequence. 0, 1, 2, 8, 24, 80, 256, 832, ...

These are actually related to Fibonacci numbers. Indeed, $a_n = 2^{n-1}F_n$. Can you prove this directly from the recursions? Alternatively, this follows from the Binet formulas.

Solution. Proceeding as for the Fibonacci numbers, we find $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1 + \sqrt{5} \approx 3.23607.$

Comment. With just a little more work, we find the Binet formula $a_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2\sqrt{5}}$