Example 59. Write $a_{n+3} - 4a_{n+2} + a_{n+1} + 6a_n = 0$ as a system of (first-order) recurrences.

Solution. Write $b_n = a_{n+1}$ and $c_n = a_{n+2}$.

Then, $a_{n+3} - 4a_{n+2} + a_{n+1} + 6a_n = 0$ translates into the first-order system $\begin{cases}
a_{n+1} = b_n \\
b_{n+1} = c_n \\
c_{n+1} = -6a_n - b_n + 4c_n
\end{cases}$ Let $\mathbf{a}_n = \begin{bmatrix} a_n \\ b_n \\ c_n \end{bmatrix}$. Then, in matrix form, the RE is $\mathbf{a}_{n+1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & 4 \end{bmatrix} \mathbf{a}_n$.

Review.

- Consequently, $a_n = M^n a_0$, where M is the matrix above.
- In general, we can solve $a_{n+1} = Ma_n$ by finding the eigenvectors of M: An λ -eigenvector v provides the solution $a_n = v\lambda^n$.
- Here, because we started with a single (third-order) equation, we can avoid computing eigenvectors: $a_n = C_1 \cdot 3^n + C_2 \cdot 2^n + C_3 \cdot (-1)^n$ is the general solution to the initial RE. (Why?! Do it!)

Correspondingly, a fundamental matrix solution of the system is $\Phi_n = \begin{bmatrix} 3^n & 2^n & (-1)^n \\ 3 \cdot 3^n & 2 \cdot 2^n & -(-1)^n \\ 9 \cdot 3^n & 4 \cdot 2^n & (-1)^n \end{bmatrix}$. Note. This tells us that $\begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$ is a 3-eigenvector, $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$ a 2-eigenvector, and $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ a -1-eigenvector of M.

• Since $\Phi_{n+1} = M\Phi_n$, we have $\Phi_n = M^n\Phi_0$ so that $M^n = \Phi_n\Phi_0^{-1}$. This allows us to compute that: $M^n = \frac{1}{12} \begin{bmatrix} -6 \cdot 3^n + 12 \cdot 2^n + 6(-1)^n & -3 \cdot 3^n + 8 \cdot 2^n - 5(-1)^n & 3 \cdot 3^n - 4 \cdot 2^n + (-1)^n \\ -18 \cdot 3^n + 24 \cdot 2^n - 6(-1)^n & \dots & \dots \\ -54 \cdot 3^n + 48 \cdot 2^n + 6(-1)^n & \dots & \dots \end{bmatrix}$

(systems of REs) The unique solution to $a_{n+1} = Ma_n$, $a_0 = c$ is $a_n = M^n c$. Note that M^n is the fundamental matrix solution to $a_{n+1} = Ma_n$ with $a_0 = I$ (the identity matrix).

Systems of differential equations

Example 60. Write the (second-order) differential equation y'' = 2y' + y as a system of (first-order) differential equations.

Solution. Write $y_1 = y$ and $y_2 = y'$. Then y'' = 2y' + y becomes $y'_2 = 2y_2 + y_1$.

Therefore, y'' = 2y' + y translates into the first-order system $\begin{cases} y'_1 = y_2 \\ y'_2 = y_1 + 2y_2 \end{cases}$ In matrix form, this is $y' = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} y$.

Comment. Hence, we care about systems of differential equations, even if we work with just one function.

Example 61. Write the (third-order) differential equation y''' = 3y'' - 2y' + y as a system of (first-order) differential equations.

Solution. Write $y_1 = y$, $y_2 = y'$ and $y_3 = y''$.

Then, y''' = 3y'' - 2y' + y translates into the first-order system $\begin{cases} y'_1 = y_2 \\ y'_2 = y_3 \\ y'_3 = y_1 - 2y_2 + 3y_3 \end{cases}$. In matrix form, this is $\mathbf{y}' = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 3 \end{bmatrix} \mathbf{y}$.

Armin Straub straub@southalabama.edu **Example 62.** Consider the following system of (second-order) initial value problems:

$$\begin{array}{ll} y_1'' = 2y_1' - 3y_2' + 7y_2 \\ y_2'' = 4y_1' + y_2' - 5y_1 \end{array} \quad y_1(0) = 2, \ y_1'(0) = 3, \ y_2(0) = -1, \ y_2'(0) = 1 \end{array}$$

Write it as a first-order initial value problem in the form y' = My, $y(0) = y_0$. Solution. Introduce $y_3 = y'_1$ and $y_4 = y'_2$. Then, the given system translates into

$m{y}' =$	0	0	1	0	y ,	$oldsymbol{y}(0) =$	2]
	0	0	0	1			-1
	0	$\overline{7}$	2	-3			3
	-5	0	4	1			1

(systems of DEs) The unique solution to y' = My, y(0) = c is $y(x) = e^{Mx}c$. Here, e^{Mx} is the fundamental matrix solution to y' = My, y(0) = I (with I the identity matrix).

Important. We are defining the **matrix exponential** e^{Mx} as the solution to an IVP. This is equivalent to how one can define the ordinary exponential e^x as the solution to y' = y, y(0) = 1.

[In a little bit, we will also discuss how to think about the matrix exponential e^{Mx} using power series.]

(a way to compute the matrix exponential e^{Mx}) Compute a fundamental matrix solution $\Phi(x)$ of y' = My. Then $e^{Mx} = \Phi(x)\Phi(0)^{-1}$.

Compare this to our method of computing matrix powers M^n .

Proof. If $\Phi(x)$ is a fundamental matrix solution, then so is $\Psi(x) = \Phi(x)C$ for any constant matrix C. (Why?!) Therefore, $\Psi(x) = \Phi(x)\Phi(0)^{-1}$ is a fundamental matrix solution with $\Psi(0) = \Phi(0)\Phi(0)^{-1} = I$. But e^{Mx} is defined to be the unique such solution, so that $\Psi(x) = e^{Mx}$.

Observe how the next example proceeds along the same lines as Example 58.

Example 63. Let $M = \begin{bmatrix} 8 & -10 \\ 5 & -7 \end{bmatrix}$.

- (a) Determine the general solution to y' = My.
- (b) Determine a fundamental matrix solution to y' = My.
- (c) Compute e^{Mx} .

Solution.

- (a) Let us look for solutions of the form $y(x) = ve^{\lambda x}$ (where $c = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$). Note that $y' = \lambda ve^{\lambda x} = \lambda y$. Plugging into y' = My we find $\lambda y = My$. In other words, $y(x) = ve^{\lambda x}$ is a solution if and only if v is a λ -eigenvector of M. We computed earlier that $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = 3$, and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = -2$. Hence, the general solution is $C_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{3x} + C_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-2x}$.
- (b) The corresponding fundamental matrix solution is $\Phi = \begin{bmatrix} 2 \cdot e^{3x} & e^{-2x} \\ e^{3x} & e^{-2x} \end{bmatrix}$. [Note that our general solution is precisely $\Phi \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$.]
- (c) Note that $\Phi(0) = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, so that $\Phi(0)^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$. It follows that

$$e^{Mx} = \Phi(x)\Phi(0)^{-1} = \begin{bmatrix} 2 \cdot e^{3x} & e^{-2x} \\ e^{3x} & e^{-2x} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot e^{3x} - e^{-2x} & -2 \cdot e^{3x} + 2e^{-2x} \\ e^{3x} - e^{-2x} & -e^{3x} + 2e^{-2x} \end{bmatrix}.$$

Armin Straub straub@southalabama.edu