Sketch of Lecture 13 Tue, 10/8/2019

\ Two more applications of systems of DEs \

Example 75. (epidemiology) Let us indicate the popular SIR model for short outbreaks of
diseases among a population of constant size N.

In a SIR model, the population is compartmentalized into S(t) susceptible, I(t) infected and R(t) recovered (or
resistant) individuals (N = S(t) + I(t) + R(t)). In the Kermack-McKendrick model, the outbreak of a disease
is modeled by
dR
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with v modeling the recovery rate and 3 the infection rate. Note that this is a non-linear system of differential

equations. For more details and many variations used in epidemiology, see:

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

Comment. The following variation
dR

——=nI — =—pSI
g =R, =851
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which assumes “infectious recovery”, was recently used to predict that facebook might loose 80% of its users by
2017. It's that claim, not mathematics (or even the modeling), which attracted a lot of media attention.

http://blogs.wsj.com/digits/2014/01/22/controversial-paper-predicts-facebook-decline/

Example 76. (military strategy) Lanchester's equations model two opposing forces during

“aimed fire" battle.

Let z(¢) and y(t) describe the number of troops on each side. Then Lanchester (during World War I) assumed
that the rates z’(t) and y/(t), at which soldiers are put out of action, are proportional to the number of opposing

forces. That is:
o) J=L i | onmmaunctorme [ 5[ <) % 5 [0 ]

The proportionality constants «, > 0 indicate the strength of the forces (“fighting effectiveness coefficients”).
These are simple linear DEs with constant coefficients, which we have learned how to solve.
For more details, see: https://en.wikipedia.org/wiki/Lanchester’,27s_laws

Comment. The “aimed fire” means that all combatants are engaged, as is common in modern combat with long-
range weapons. This is rather different than ancient combat, where soldier's were engaging one opponent at a
time.

Some special functions and the power series method

| Review: power series

Definition 77. A function y(x) is analytic around = = ¢ if it has a power series

y(x)= Z an(x — x0)™

n=0

In other words, y(z) is equal to its Taylor series around = = x.
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Power series are very pleasant to work with because they behave just like polynomials. For instance,
we can differentiate and integrate them:

o0

o If y(z)= Z an(r — o)™, then y'(x) = Z na,(x —x0)" ! (another power series!).
n=0 n=1

Note that y'( Z nap(x—x9)" Z (n+1)an1(x —x0)". Likewise, for higher derivatives.

o /y(m)dxzz nﬁll(x—xo)"Jrl-l-C’

n=0

Theorem 78. If y(x) is analytic around = = x¢, then y(z) is infinitely differentiable and

> (n)
y(x)= g an(x —x0)" with a,= y—(azo).
n=0

n!

Caution. Analyticity is needed in this theorem; being infinitely differentiable is not enough. For instance, y(x) =
e~ /%" is infinitely differentiable around z =0 (and everywhere else). However, 3™ (0) =0 for all n.

We have already seen the following example.

oo n

Example 79. % = Z %zl—i—x—l—%ﬁ—i—%x‘g—i—...
£ nl !

Once again, notice how the power series clearly has the property that 3y’ = v.

It follows from here that, for instance, 2% = Z (25) =1+4+2x+ 222+ 333 + ..
n=0

Example 80. Determine a power series for cos(x).
Solution. (via DE) cos(z) is the unique solution to the IVP y” = —y, y(0) =1, y’(0) =0.

i (n)
It follows that cos(x) = Z anx™ with a, = yn—'(O) The DE implies that y(*™)(z) = (—1)"y(z) and
n=0 : [e o] _1\n
y 2t = (—1)y(z) so that y?™)(0) = (—1)" and 3®"T1)(0) = 0. Consequently, cos(z) = Z (( 711))' x2n,
n=0 ’
Solution. (via Euler’s formula) Recall that e*® = cos(x )—i—z’sin(w) Since
o0 oo
ix (ZQ?) ( ('L.T 2m+1 ( l)m 2m (_l)mx2m+1
=2 Z (2m Z @m+1)! Z iy @m+1)!
n=0 m=0
= (_1) 2n : = (_l)n 2n+1
we conclude that cos(z) = 7;) @n)! x2°™ and sin(x) = 7;) mm .

Example 81. (Airy equation, to be cont’d) Let y(x) be the unique solution to the IVP y" =zy,
y(0)=a, y'(0) =b. Determine the first several terms (up to z°) in the power series of y(z).

Solution. (successive differentiation) From the DE, y”/(0) =0 y(0) =0.

Differentiating both sides of the DE, we obtain y'"/ =y + xy’ so that y""/(0) = y(0) +0- y’(0) = a.

Likewise, y(*) =2y’ 4+ zy" shows y(*)(0) = 2y’(0) = 2b.

Continuing, y(®) =3y"" + 2y’ so that 3®)(0) = 3y"/(0) =0

Continuing, y(®) = 4y”/+ zy™) so that y(6)(0) = 4y“’(0) =

Hence, y(x) —a+bm+ y”(O)m += y’“(O) + 57 y(4)(0) (5)(0)1’ + 55 (6)(0)x6+

=a+bx+ g’ + 4+—x +..

180
Comment. Do you see the general pattern? We will revisit this example soon.

Armin Straub 27
straub@southalabama.edu



