Sketch of Lecture 16 Tue, 10/22/2019

Review. Theorem [88:](#page--1-0) If x_0 is an ordinary point of a linear IVP, then it is guaranteed to have a power series solution $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$.

Moreover, its radius of convergence is at least the distance between x_0 and the closest singular point.

Example 92. Find a minimum value for the radius of convergence of a power series solution to $(x^2+4)y'' - 3xy' + \frac{1}{x+1}y = 0$ at $x = 2$.

Solution. The singular points are $x = \pm 2i, -1$. Hence, $x = 2$ is an ordinary point of the DE and the distance to the nearest singular point is $|2-2i|=\sqrt{2^2+2^2}=\sqrt{8}$ (the distances are $|2-(-1)|\!=\!3,|2-2i|\!=\!|2-(-2i)|\!=\!\sqrt{8}).$ By Theorem [88,](#page--1-0) the DE has power series solutions about x $=$ 2 with radius of convergence at least $\sqrt{8}$.

Example 93. (caution!) Theorem [88](#page--1-0) only holds for linear DEs! For nonlinear DEs, it is very hard to predict whether there is a power series solution and what its radius of convergence is. $y^2 + 2xy^2 = 0.$

Its coefficients have no singularities.

A solution to this DE is $y(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$ (check that!), which has radius of convergence 1. On the other hand. $y(x)$ also solves the linear DE $(1+x^2)y'+2xy=0$. Note how the DE has singular points for $x = \pm i$. This allows us to predict that $y(x)$ must have a power series with radius of convergence at least 1.

Example 94. (Bessel functions) Consider the DE $x^2y'' + xy' + x^2y = 0$. Derive a recursive description of a power series solutions $y(x)$ at $x=0$.

Caution! Note that $x = 0$ is a singular point (the only) of the DE. Theorem [88](#page--1-0) therefore does not guarantee a basis of power series solutions. [However, $x = 0$ is what is called a regular singular point; for these, we are guaranteed one power series solution, as well as additional solutions expressed using logarithms and power series.]

Comment. We could divide the DE by *x* (but that wouldn't really change the computations below). The reason for not dividing that *x* is that this DE is the special case $\alpha = 0$ of the Bessel equation $x^2y'' + xy' + (x^2 - \alpha^2)y =$ 0 (for which no such dividing is possible).

Solution. (plug in power series) Let us spell out power series for x^2y , xy' , x^2y'' starting with $y(x) = \sum_{n=0}^{\infty} a_n x^n$:

$$
x^{2}y(x) = \sum_{n=0}^{\infty} a_{n}x^{n+2} = \sum_{n=2}^{\infty} a_{n-2}x^{n}
$$

\n
$$
xy'(x) = \sum_{n=1}^{\infty} n a_{n}x^{n}
$$

\n
$$
x^{2}y''(x) = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n}
$$

\n
$$
x^{2}y''(x) = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n}
$$

\n
$$
x^{2}y''(x) = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n-2}
$$

\n
$$
x^{2}y''(x) = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n-2}
$$

\n
$$
x^{2}y''(x) = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n-2}
$$

Hence, the DE becomes $\sum_{n=2}^{\infty} n(n-1)a_n x^n + \sum_{n=1}^{\infty} n a_n x^n + \sum_{n=2}^{\infty} a_{n-2} x^n = 0$. We compare coefficients of x^n :

- $n=1: a_1=0$
- $n \geqslant 2$: $n(n-1)a_n + na_n + a_{n-2} = 0$, which simplifies to $n^2 a_n = -a_{n-2}$. It follows that $a_{2n} = \frac{(-1)^n}{4^n n!^2} a_0$ and $a_{2n+1} = 0.$

Observation. The fact that we found $a_1 = 0$ reflects the fact that we cannot represent the general solution through power series alone.

Comment. If $a_0 = 1$, the function we found is a Bessel function and denoted as $J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!^2} \left(\frac{x}{2}\right)^{2n}$. The more general Bessel functions $J_\alpha(x)$ are solutions to the DE $x^2y''+xy'+(x^2-\alpha^2)y=0.$

Example 95. (caution!) Consider the linear DE $x^2y' = y - x$. Does it have a convergent power series solution at $x = 0$?

Important note. The DE $x^2y' = y - x$ has the singular point $x = 0$. Hence, Theorem [88](#page--1-0) does not apply.

Solution. Let us look for a power series solution
$$
y(x) = \sum_{n=0}^{\infty} a_n x^n
$$
.
\n $x^2 y'(x) = x^2 \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=1}^{\infty} n a_n x^{n+1} = \sum_{n=2}^{\infty} (n-1) a_{n-1} x^n$
\nHence, $x^2 y' = y - x$ becomes $\sum_{n=2}^{\infty} (n-1) a_{n-1} x^n = \sum_{n=0}^{\infty} a_n x^n - x$. We compare coefficients of x^n :

- $n = 0$: $a_0 = 0$.
- $n=1$: $0=a_1-1$, so that $a_1=1$.
- $n \geq 2$: $(n-1)a_{n-1} = a_n$, from which it follows that $a_n = (n-1)a_{n-1} = (n-1)(n-2)a_{n-2} = \cdots =$ $(n-1)!a_1 = (n-1)!$.

Hence the DE has the "formal" power series solution $y(x) = \sum_{n=1}^{\infty} (n-1)! x^n$.

However, that series is divergent for all $x \neq 0$; that is, the radius of convergence is 0.

Inverses of power series

Example 96. (extra) For each of the following compute the first few terms of the power series.

(a)
$$
(a_0 + a_1x + a_2x^2 + ...)(b_0 + b_1x + b_2x^2...)
$$

(b)
$$
\frac{1}{a_0 + a_1 x + a_2 x^2 + \dots}
$$

(c)
$$
\frac{1}{1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \dots}
$$

Solution.

(a) $a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + O(x^3)$

(b) The answer is $b_0 + b_1x + ...$ with the property that $(a_0 + a_1x + a_2x^2 + ...)(b_0 + b_1x + b_2x^2...) = 1.$ By the first part, and comparing coefficients, $a_0b_0 = 1$, $a_0b_1 + a_1b_0 = 0$, $a_0b_2 + a_1b_1 + a_2b_0 = 0$, ... Hence, $b_0 = \frac{1}{a_0}$, $b_1 = -\frac{1}{a_0}$ $\frac{1}{a_0}$, $b_1 = -\frac{1}{a_0}(a_1b_0) = -\frac{a_1}{a_0^2}$, $b_2 = -\frac{1}{a_0}(a_1b_0)$ $\frac{a_1}{a_0^2}$, $b_2 = -\frac{1}{a_0}(a_1b_1 + a_2b_0) = \frac{a_1^2}{a_0^3} - \frac{a_2}{a_0^2}$. $\frac{a_1^2}{a_0^3} - \frac{a_2}{a_0^2}.$ $\frac{a_2}{a_0^2}$.

(c)
$$
\frac{1}{1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+...} = 1-x+\frac{1}{2}x^2-\frac{1}{6}x^3+...
$$

Comment. This reflects $\frac{1}{e^x} = e^{-x}$.

Likewise, we could compute the first few terms of the power series of, say, $\frac{1}{1-\pi}$ $\frac{1}{1-x-x^2}$. However, it turns out that we can describe all terms in that power series:

Example 97. Derive a recursive description of the power series for $y(x) = \frac{1}{1-x^2}$. $\frac{1}{1-x-x^2}$.

Solution. Write $y(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$
1 = (1 - x - x^{2}) \sum_{n=0}^{\infty} a_{n} x^{n} = \sum_{\substack{n=0 \ n \ge 0}}^{\infty} a_{n} x^{n} - \sum_{\substack{n=0 \ n \ge 0}}^{\infty} a_{n} x^{n+1} - \sum_{\substack{n=0 \ n \ge 0}}^{\infty} a_{n} x^{n+2}
$$

$$
= \sum_{n=0}^{\infty} a_{n} x^{n} - \sum_{n=1}^{\infty} a_{n-1} x^{n} - \sum_{n=2}^{\infty} a_{n-2} x^{n}.
$$

We compare coefficients of x^n :

- $n = 0$: $1 = a_0$.
- $n=1$: $0 = a_1 a_0$, so that $a_1 = a_0 = 1$.
- $n \ge 2$: $0 = a_n a_{n-1} a_{n-2}$ or, equivalently, $a_n = a_{n-1} + a_{n-2}$.

This is the recursive description of the Fibonacci numbers $F_n!$ In particular $a_n = F_n$.

The first few terms. $\frac{1}{1-x-x^2} = 1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + 13x^6 + ...$

Comment. The function $y(x)$ is said to be a **generating function** for the Fibonacci numbers. Challenge. Can you rederive Binet's formula from partial fractions and the geometric series?