
Sketch of Lecture 16 Tue, 10/22/2019

Review. Theorem 88: If x0 is an ordinary point of a linear IVP, then it is guaranteed to have a
power series solution y(x)=

P
n=0
1 an(x¡x0)n.

Moreover, its radius of convergence is at least the distance between x0 and the closest singular point.

Example 92. Find a minimum value for the radius of convergence of a power series solution to
(x2+4)y 00¡ 3xy 0+ 1

x+1
y=0 at x=2.

Solution. The singular points are x=�2i;¡1. Hence, x=2 is an ordinary point of the DE and the distance to the
nearest singular point is j2¡2ij= 22+22

p
= 8
p

(the distances are j2¡ (¡1)j=3, j2¡2ij= j2¡ (¡2i)j= 8
p

).

By Theorem 88, the DE has power series solutions about x=2 with radius of convergence at least 8
p

.

Example 93. (caution!) Theorem 88 only holds for linear DEs! For nonlinear DEs, it is very hard
to predict whether there is a power series solution and what its radius of convergence is.
Consider, for instance, the nonlinear DE y 0+2xy2=0.
Its coe�cients have no singularities.

A solution to this DE is y(x)=
1

1+ x2
=

X
n=0

1
(¡1)nx2n (check that!), which has radius of convergence 1.

On the other hand. y(x) also solves the linear DE (1+x2)y 0+2xy=0. Note how the DE has singular points
for x=�i. This allows us to predict that y(x) must have a power series with radius of convergence at least 1.

Example 94. (Bessel functions) Consider the DE x2y 00 + xy 0 + x2y = 0. Derive a recursive
description of a power series solutions y(x) at x=0.
Caution! Note that x= 0 is a singular point (the only) of the DE. Theorem 88 therefore does not guarantee
a basis of power series solutions. [However, x= 0 is what is called a regular singular point; for these, we are
guaranteed one power series solution, as well as additional solutions expressed using logarithms and power series.]

Comment. We could divide the DE by x (but that wouldn't really change the computations below). The reason
for not dividing that x is that this DE is the special case �=0 of the Bessel equation x2y 00+xy 0+(x2¡�2)y=
0 (for which no such dividing is possible).

Solution. (plug in power series) Let us spell out power series for x2y;xy0; x2y 00 starting with y(x)=
X
n=0

1
anx

n:

x2y(x)=
X
n=0

1
anx

n+2=
X
n=2

1
an¡2x

n

xy 0(x)=
X
n=1

1
nanx

n (because y0(x)=
X
n=1

1
nanx

n¡1)

x2y 00(x)=
X
n=2

1
n(n¡ 1)anxn (because y 00(x)=

X
n=2

1
n(n¡ 1)anxn¡2)

Hence, the DE becomes
X
n=2

1
n(n¡ 1)anxn+

X
n=1

1
nanxn+

X
n=2

1
an¡2xn=0. We compare coe�cients of xn:

� n=1: a1=0

� n> 2: n(n¡ 1)an+nan+ an¡2=0, which simpli�es to n2an=¡an¡2.
It follows that a2n=

(¡1)n
4nn!2

a0 and a2n+1=0.

Observation. The fact that we found a1 = 0 re�ects the fact that we cannot represent the general solution
through power series alone.

Comment. If a0=1, the function we found is a Bessel function and denoted as J0(x) =
X
n=0

1
(¡1)n
n!2

�
x
2

�2n
.

The more general Bessel functions J�(x) are solutions to the DE x2y 00+ xy 0+ (x2¡�2)y=0.
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Example 95. (caution!) Consider the linear DE x2y 0= y¡x. Does it have a convergent power
series solution at x=0?
Important note. The DE x2y 0= y¡x has the singular point x=0. Hence, Theorem 88 does not apply.

Solution. Let us look for a power series solution y(x)=
X
n=0

1
anx

n.

x2y 0(x)=x2
X
n=1

1
nanx

n¡1=
X
n=1

1
nanx

n+1=
X
n=2

1
(n¡ 1)an¡1xn

Hence, x2y 0= y¡x becomes
X
n=2

1
(n¡ 1)an¡1xn=

X
n=0

1
anxn¡ x. We compare coe�cients of xn:

� n=0: a0=0.

� n=1: 0= a1¡ 1, so that a1=1.

� n> 2: (n¡ 1)an¡1= an, from which it follows that an=(n¡ 1)an¡1=(n¡ 1)(n¡ 2)an¡2= ���=
(n¡ 1)!a1=(n¡ 1)!.

Hence the DE has the �formal� power series solution y(x)=
X
n=1

1
(n¡ 1)!xn.

However, that series is divergent for all x=/ 0; that is, the radius of convergence is 0.

Inverses of power series

Example 96. (extra) For each of the following compute the �rst few terms of the power series.

(a) (a0+ a1x+ a2x2+ :::)(b0+ b1x+ b2x2:::)

(b)
1

a0+ a1x+ a2x2+ :::

(c)
1

1+ x+
1

2
x2+

1

6
x3+ :::

Solution.

(a) a0b0+ (a0b1+ a1b0)x+(a0b2+ a1b1+ a2b0)x2+O(x3)

(b) The answer is b0+ b1x+ ::: with the property that (a0+ a1x+ a2x2+ :::)(b0+ b1x+ b2x2:::)= 1.
By the �rst part, and comparing coe�cients, a0b0=1, a0b1+ a1b0=0, a0b2+ a1b1+ a2b0=0, :::

Hence, b0=
1

a0
, b1=¡ 1

a0
(a1b0)=¡a1

a0
2 , b2=¡

1

a0
(a1b1+ a2b0)=

a1
2

a0
3 ¡

a2

a0
2 .

(c)
1

1+x+
1

2
x2+

1

6
x3+ :::

=1¡x+ 1
2
x2¡ 1

6
x3+ :::

Comment. This re�ects 1

ex
= e¡x.
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Likewise, we could compute the �rst few terms of the power series of, say,
1

1¡x¡x2 .

However, it turns out that we can describe all terms in that power series:

Example 97. Derive a recursive description of the power series for y(x)=
1

1¡ x¡x2 .

Solution. Write y(x)=
X
n=0

1
anx

n. Then

1= (1¡x¡x2)
X
n=0

1
anx

n =
X
n=0

1
anx

n¡
X
n=0

1
anx

n+1¡
X
n=0

1
anx

n+2

=
X
n=0

1
anxn¡

X
n=1

1
an¡1xn¡

X
n=2

1
an¡2xn:

We compare coe�cients of xn:

� n=0: 1= a0.

� n=1: 0= a1¡ a0, so that a1= a0=1.

� n> 2: 0= an¡ an¡1¡ an¡2 or, equivalently, an= an¡1+ an¡2.

This is the recursive description of the Fibonacci numbers Fn! In particular an=Fn.

The �rst few terms. 1

1¡x¡x2 =1+x+2x2+3x3+5x4+8x5+ 13x6+ :::

Comment. The function y(x) is said to be a generating function for the Fibonacci numbers.
Challenge. Can you rederive Binet's formula from partial fractions and the geometric series?
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