Sketch of Lecture 16

Review. Theorem 88: If x_0 is an ordinary point of a linear IVP, then it is guaranteed to have a power series solution $y(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$.

Moreover, its radius of convergence is at least the distance between x_0 and the closest singular point.

Example 92. Find a minimum value for the radius of convergence of a power series solution to $(x^2+4)y''-3xy'+\frac{1}{x+1}y=0$ at x=2.

Solution. The singular points are $x = \pm 2i$, -1. Hence, x = 2 is an ordinary point of the DE and the distance to the nearest singular point is $|2 - 2i| = \sqrt{2^2 + 2^2} = \sqrt{8}$ (the distances are |2 - (-1)| = 3, $|2 - 2i| = |2 - (-2i)| = \sqrt{8}$). By Theorem 88, the DE has power series solutions about x = 2 with radius of convergence at least $\sqrt{8}$.

Example 93. (caution!) Theorem 88 only holds for linear DEs! For nonlinear DEs, it is very hard to predict whether there is a power series solution and what its radius of convergence is. Consider, for instance, the nonlinear DE $y' + 2xy^2 = 0$.

Its coefficients have no singularities.

A solution to this DE is $y(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$ (check that!), which has radius of convergence 1.

On the other hand. y(x) also solves the linear DE $(1+x^2)y'+2xy=0$. Note how the DE has singular points for $x = \pm i$. This allows us to predict that y(x) must have a power series with radius of convergence at least 1.

Example 94. (Bessel functions) Consider the DE $x^2y'' + xy' + x^2y = 0$. Derive a recursive description of a power series solutions y(x) at x = 0.

Caution! Note that x = 0 is a singular point (the only) of the DE. Theorem 88 therefore does not guarantee a basis of power series solutions. [However, x = 0 is what is called a **regular singular point**; for these, we are guaranteed one power series solution, as well as additional solutions expressed using logarithms and power series.]

Comment. We could divide the DE by x (but that wouldn't really change the computations below). The reason for not dividing that x is that this DE is the special case $\alpha = 0$ of the **Bessel equation** $x^2y'' + xy' + (x^2 - \alpha^2)y = 0$ (for which no such dividing is possible).

Solution. (plug in power series) Let us spell out power series for x^2y, xy', x^2y'' starting with $y(x) = \sum_{n=0}^{\infty} a_n x^n$: $x^2y(x) = \sum_{n=0}^{\infty} a_n x^{n+2} - \sum_{n=0}^{\infty} a_n x^n$

$$x^{2}y(x) = \sum_{n=0}^{\infty} a_{n}x^{n+2} = \sum_{n=2}^{\infty} a_{n-2}x^{n}$$

$$xy'(x) = \sum_{n=1}^{\infty} na_{n}x^{n}$$
(because $y'(x) = \sum_{n=1}^{\infty} na_{n}x^{n-1}$)
$$x^{2}y''(x) = \sum_{n=1}^{\infty} n(n-1)a_{n}x^{n}$$
(because $y''(x) = \sum_{n=1}^{\infty} n(n-1)a_{n}x^{n-2}$)

Hence, the DE becomes $\sum_{n=2}^{\infty} n(n-1)a_nx^n + \sum_{n=1}^{\infty} na_nx^n + \sum_{n=2}^{\infty} a_{n-2}x^n = 0$. We compare coefficients of x^n :

- n = 1: $a_1 = 0$
- $n \ge 2$: $n(n-1)a_n + na_n + a_{n-2} = 0$, which simplifies to $n^2a_n = -a_{n-2}$. It follows that $a_{2n} = \frac{(-1)^n}{4^n n!^2}a_0$ and $a_{2n+1} = 0$.

Observation. The fact that we found $a_1 = 0$ reflects the fact that we cannot represent the general solution through power series alone.

Comment. If $a_0 = 1$, the function we found is a Bessel function and denoted as $J_0(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!^2} \left(\frac{x}{2}\right)^{2n}$. The more general Bessel functions $J_{\alpha}(x)$ are solutions to the DE $x^2y'' + xy' + (x^2 - \alpha^2)y = 0$. **Example 95. (caution!)** Consider the linear DE $x^2y' = y - x$. Does it have a convergent power series solution at x = 0?

Important note. The DE $x^2y' = y - x$ has the singular point x = 0. Hence, Theorem 88 does not apply.

Solution. Let us look for a power series solution
$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$
.
 $x^2 y'(x) = x^2 \sum_{n=1}^{\infty} n a_n x^{n-1} = \sum_{n=1}^{\infty} n a_n x^{n+1} = \sum_{n=2}^{\infty} (n-1)a_{n-1}x^n$
Hence, $x^2 y' = y - x$ becomes $\sum_{n=2}^{\infty} (n-1)a_{n-1}x^n = \sum_{n=0}^{\infty} a_n x^n - x$. We compare coefficients of x^n :

- n = 0: $a_0 = 0$.
- n = 1: $0 = a_1 1$, so that $a_1 = 1$.
- $n \ge 2$: $(n-1)a_{n-1} = a_n$, from which it follows that $a_n = (n-1)a_{n-1} = (n-1)(n-2)a_{n-2} = \dots = (n-1)!a_1 = (n-1)!$.

Hence the DE has the "formal" power series solution $y(x) = \sum_{n=1}^{\infty} (n-1)! x^n$.

However, that series is divergent for all $x \neq 0$; that is, the radius of convergence is 0.

Inverses of power series

Example 96. (extra) For each of the following compute the first few terms of the power series.

(a)
$$(a_0 + a_1x + a_2x^2 + ...)(b_0 + b_1x + b_2x^2...)$$

(b)
$$\frac{1}{a_0 + a_1 x + a_2 x^2 + \dots}$$

(c)
$$\frac{1}{1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\dots}$$

Solution.

- (a) $a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + O(x^3)$
- (b) The answer is $b_0 + b_1x + ...$ with the property that $(a_0 + a_1x + a_2x^2 + ...)(b_0 + b_1x + b_2x^2...) = 1$. By the first part, and comparing coefficients, $a_0b_0 = 1$, $a_0b_1 + a_1b_0 = 0$, $a_0b_2 + a_1b_1 + a_2b_0 = 0$, ... Hence, $b_0 = \frac{1}{a_0}$, $b_1 = -\frac{1}{a_0}(a_1b_0) = -\frac{a_1}{a_0^2}$, $b_2 = -\frac{1}{a_0}(a_1b_1 + a_2b_0) = \frac{a_1^2}{a_0^3} - \frac{a_2}{a_0^2}$.

(c)
$$\frac{1}{1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\dots} = 1-x+\frac{1}{2}x^2-\frac{1}{6}x^3+\dots$$

Comment. This reflects $\frac{1}{e^x} = e^{-x}$.

Likewise, we could compute the first few terms of the power series of, say, $\frac{1}{1-x-x^2}$. However, it turns out that we can describe all terms in that power series:

Example 97. Derive a recursive description of the power series for $y(x) = \frac{1}{1 - x - x^2}$.

Solution. Write $y(x) = \sum_{n=0}^{\infty} a_n x^n$. Then

$$1 = (1 - x - x^2) \sum_{n=0}^{\infty} a_n x^n = \sum_{\substack{n=0\\n=0}}^{\infty} a_n x^n - \sum_{\substack{n=0\\n=0}}^{\infty} a_n x^{n+1} - \sum_{\substack{n=0\\n=1}}^{\infty} a_n x^{n+2}$$
$$= \sum_{\substack{n=0\\n=0}}^{\infty} a_n x^n - \sum_{\substack{n=1\\n=1}}^{\infty} a_{n-1} x^n - \sum_{\substack{n=2\\n=2}}^{\infty} a_{n-2} x^n.$$

We compare coefficients of x^n :

- n = 0: $1 = a_0$.
- n=1: $0=a_1-a_0$, so that $a_1=a_0=1$.
- $n \ge 2$: $0 = a_n a_{n-1} a_{n-2}$ or, equivalently, $a_n = a_{n-1} + a_{n-2}$.

This is the recursive description of the Fibonacci numbers $F_n!$ In particular $a_n = F_n$.

The first few terms. $\frac{1}{1-x-x^2} = 1 + x + 2x^2 + 3x^3 + 5x^4 + 8x^5 + 13x^6 + ...$ Comment. The function y(x) is said to be a generating function for the Fibonacci numbers. Challenge. Can you rederive Binet's formula from partial fractions and the geometric series?