
Sketch of Lecture 17 Thu, 10/24/2019

Power series of familiar functions

(Unless we specify otherwise, power series are meant to be about x=0.)

Example 98. The hyperbolic cosine cosh(x) is de�ned to be the even part of ex. In other words,
cosh(x)= 1

2
(ex+ e¡x). Determine its power series.

Solution. It follows from ex=
X
n=0

1
xn

n!
that cosh(x) =

X
n=0

1
x2n

(2n)!
.

Comment. Note that cosh(ix)= cos(x) (because cos(x)= 1

2
(eix+ e¡ix)).

Comment. The hyperbolic sine sinh(x) is similarly de�ned to be the odd part of ex.

Example 99. (geometric series) Determine y(x)=
X
n=0

1

xn.

Solution. Note that xy= y¡ 1. Hence, y= 1
1¡ x

.

Comment. The radius of convergence of this series is 1. This is easy to see directly. But note that it also follows
from Theorem 88 since y(x) solves the �di�erential� (inhomogeneous) equation (1¡x)y=1, for which the only
singular point is x=1.

Example 100. Determine a power series for
1

1+ x2
.

Solution. Replace x with ¡x2 in 1
1¡x =

X
n=0

1
xn to get

1

1+ x2
=

X
n=0

1
(¡1)nx2n.

Example 101. (extra) Determine a power series for ln(x) around x=1.

Solution. This is equivalent to �nding a power series for ln(x+1) around x=0 (see the �nal step).

Observe that ln(x+1)=

Z
dx
1+x

and that
1

1+ x
=

X
n=0

1
(¡1)nxn.

Integrating, ln(x+1)=
X
n=0

1
(¡1)nx

n+1

n+1
+C. Since ln(1)=0, we conclude that C=0.

Finally, ln(x+1)=
X
n=0

1
(¡1)nx

n+1

n+1
is equivalent to ln(x)=

X
n=0

1
(¡1)n
n+1

(x¡ 1)n+1.

Comment. Choosing x=2 in ln(x)=
X
n=0

1
(¡1)n
n+1

(x¡1)n+1 results in ln(2)=
X
n=0

1
(¡1)n
n+1

=1¡ 1
2
+
1
3
¡ 1
4
+ :::.

The latter is the alternating harmonic sum.
Can you see from here why the harmonic sum 1+

1

2
+
1

3
+
1

4
+ ::: diverges?

Example 102. Determine a power series for arctan(x).

Solution. Recall that arctan(x) =
Z

dx

1+x2
. Hence, we need to integrate

1

1+ x2
=

X
n=0

1
(¡1)nx2n.

It follows that arctan(x)=
X
n=0

1
(¡1)nx

2n+1

2n+1
+C. Since arctan(0)=0, we conclude that C =0.
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Example 103. (error function) Determine a power series for erf(x)=
2

�
p

Z
0

x

e¡t
2
dt.

Solution. It follows from ex=
X
n=0

1
xn

n!
that e¡t

2

=
X
n=0

1
(¡1)nt2n

n!
.

Integrating, we obtain erf(x)= 2

�
p

Z
0

x

e¡t
2

dt=
2

�
p

X
n=0

1
(¡1)nx2n+1
n!(2n+1)

.

Example 104. Determine the �rst several terms (up to x5) in the power series of tan(x).
Solution. Observe that y(x)= tan(x) is the unique solution to the IVP y 0=1+ y2, y(0)=0.
We can therefore proceed to determine the �rst few power series coe�cients as we did earlier.
That is, we plug y= a0+ a1x+ a2x2+ a3x3+ a4x4+ ::: into the DE. Note that y(0)=0 means a0=0.
y 0= a1+2a2x+3a3x2+4a4x3+5a5x4+ :::

1+ y2=1+(a1x+ a2x2+ a3x3+ :::)2=1+ a1
2x2+ (2a1a2)x3+ (2a1a3+ a2

2)x4+ :::

Comparing coe�cients, we �nd: a1=1, 2a2=0, 3a3= a1
2, 4a4=2a1a2, 5a5=2a1a3+ a2

2.

Solving for a2; a3; :::, we conclude that tan(x)=x+
x3

3
+
2x5

15
+
17x7

315
+ :::

Comment. The fact that tan(x) is an odd function translates into an= 0 when n is even. If we had realized
that at the beginning, our computation would have been simpli�ed.

Advanced comment. The full power series is tan(x) =
X
n=1

1
(¡1)n¡122n(22n¡ 1)B2n

(2n)!
x2n¡1.

Here, the numbers B2n are (rather mysterious) rational numbers known as Bernoulli numbers.
The radius of convergence is �/2. Note that this is not at all obvious from the DE y0=1+ y2. This illustrates
the fact that nonlinear DEs are much more complicated than linear ones. (There's no analog of Theorem 88.)

Fourier series
The following amazing fact is saying that any 2�-periodic function can be written as a sum of
cosines and sines.
Advertisement. In Linear Algebra II, we will see the following natural way to look at Fourier series: the functions
1, cos(t), sin(t), cos(2t), sin(2t), ::: are orthogonal to each other (for that to make sense, we need to think of
functions as vectors and introduce a natural inner product). In fact, they form an orthogonal basis for the space
of piecewise smooth functions. In that setting, the formulas for the coe�cients an and bn are nothing but the
usual projection formulas for orthogonal projection onto a single vector.

Theorem 105. Every� 2�-periodic function f can be written as a Fourier series

f(t)=
a0
2
+

X
n=1

1

(ancos(nt)+ bnsin(nt)):

Technical detail�: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity of f , then the Fourier series converges to the average f(t¡)+ f(t+)

2
.

The Fourier coe�cients an, bn are unique and can be computed as

an=
1
�

Z
¡�

�

f(t)cos(nt)dt; bn=
1
�

Z
¡�

�

f(t)sin(nt)dt:

Comment. Another common way to write Fourier series is f(t)=
X

n=¡1

1
cn e

int.

These two ways are equivalent; we can convert between them using Euler's identity eint= cos(nt)+ i sin(nt).
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