Power series of familiar functions

(Unless we specify otherwise, power series are meant to be about $x = 0$.)

Example 98. The hyperbolic cosine $\cosh(x)$ is defined to be the even part of e^x . In other words, $cosh(x) = \frac{1}{2}(e^x + e^{-x}).$ $\frac{1}{2}(e^x+e^{-x})$. Determine its power series.

Solution. It follows from $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ that $\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$.

Comment. Note that $\cosh(ix) = \cos(x)$ (because $\cos(x) = \frac{1}{2}(e^{ix} + e^{-ix})$ $\frac{1}{2}(e^{ix} + e^{-ix}).$ **Comment.** The hyperbolic sine $sinh(x)$ is similarly defined to be the odd part of e^x .

Example 99. (geometric series) Determine $y(x) = \sum_{n=0}^{\infty} x^n$. *x ⁿ*.

Solution. Note that $xy = y - 1$. Hence, $y = \frac{1}{1 - x}$. $1 - x$.

Comment. The radius of convergence of this series is 1. This is easy to see directly. But note that it also follows from Theorem [88](#page--1-0) since $y(x)$ solves the "differential" (inhomogeneous) equation $(1-x)y=1$, for which the only singular point is $x = 1$.

Example 100. Determine a power series for $\frac{1}{1+\pi^2}$. $1 + x^2$.

Solution. Replace x with $-x^2$ in $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ to get $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$.

Example 101. (extra) Determine a power series for $\ln(x)$ around $x = 1$.

Solution. This is equivalent to finding a power series for $\ln(x + 1)$ around $x = 0$ (see the final step).

Observe that $\ln(x+1) = \int \frac{dx}{1+x^2}$ and tha $\frac{\mathrm{d}x}{1+x}$ and that $\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$. Integrating, $\ln(x+1) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} + C$. Since $\ln(1) = 0$, we conclude that $C = 0$. Finally, $\ln(x+1) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$ is equivalen $\frac{x^{n+1}}{n+1}$ is equivalent to $\ln(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} (x-1)^{n+1}$.

Comment. Choosing $x = 2$ in $\ln(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}(x-1)^{n+1}$ results in $\ln(2) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ $\frac{1}{3}$ $\frac{1}{4}$ + ... $\frac{1}{4} + ...$ The latter is the alternating harmonic sum. Can you see from here why the harmonic sum $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...$ diverges?

Example 102. Determine a power series for arctan(*x*).

Solution. Recall that $\arctan(x) = \int \frac{dx}{1+x^2}$. Hence $\frac{dx}{1+x^2}$. Hence, we need to integrate $\frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$. It follows that $\arctan(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} + C$. Since $\arctan(0) = 0$, we conclude that $C = 0$.

Armin Straub Armin Straub $\bf{35}$ **Example 103. (error function)** Determine a power series for $\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ $\overline{\sqrt{\pi}}$ *J*⁰ e α *u*. \int_{0}^{x} $-t^2$ 1. 0 $\int_{0}^{x}e^{-t^2}dt$.

Solution. It follows from $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ that $e^{-t^2} = \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{n!}$.

Integrating, we obtain $\mathrm{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ $\sqrt{\pi}$ *J*⁰^e d*i* = $\int_0^x e^{-t^2} dt = \frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!(2n+1)}$ $\frac{n!(2n+1)}{n!(2n+1)}$.

Example 104. Determine the first several terms (up to x^5) in the power series of $\tan(x)$.

Solution. Observe that $y(x) = \tan(x)$ is the unique solution to the IVP $y' = 1 + y^2$, $y(0) = 0$.

We can therefore proceed to determine the first few power series coefficients as we did earlier.

That is, we plug $y = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + ...$ into the DE. Note that $y(0) = 0$ means $a_0 = 0$. $y' = a_1 + 2a_2x + 3a_3x^2 + 4a_4x^3 + 5a_5x^4 + \dots$

 $1 + y^2 = 1 + (a_1x + a_2x^2 + a_3x^3 + ...)$
2 = 1 + $a_1^2x^2 + (2a_1a_2)x^3 + (2a_1a_3 + a_2^2)x^4 + ...$

Comparing coefficients, we find: $a_1 = 1$, $2a_2 = 0$, $3a_3 = a_1^2$, $4a_4 = 2a_1a_2$, $5a_5 = 2a_1a_3 + a_2^2$. .

Solving for $a_2, a_3, ...$, we conclude that $\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + ...$

Comment. The fact that $tan(x)$ is an odd function translates into $a_n = 0$ when *n* is even. If we had realized that at the beginning, our computation would have been simplified.

Advanced comment. The full power series is $\tan(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} 2^{2n} (2^{2n} - 1) B_{2n}}{(2n)!} x^{2n-1}$.

Here, the numbers *B*2*ⁿ* are (rather mysterious) rational numbers known as Bernoulli numbers.

The radius of convergence is $\pi/2$. Note that this is not at all obvious from the DE $y'\!=\!1+y^2$. This illustrates the fact that nonlinear DEs are much more complicated than linear ones. (There's no analog of Theorem [88.](#page--1-0))

Fourier series

The following amazing fact is saying that any 2π -periodic function can be written as a sum of cosines and sines.

Advertisement. In Linear Algebra II, we will see the following natural way to look at Fourier series: the functions 1, $cos(t)$, $sin(t)$, $cos(2t)$, $sin(2t)$, \ldots are orthogonal to each other (for that to make sense, we need to think of functions as vectors and introduce a natural inner product). In fact, they form an orthogonal basis for the space of piecewise smooth functions. In that setting, the formulas for the coefficients a_n and b_n are nothing but the usual projection formulas for orthogonal projection onto a single vector.

Theorem 105. Every* 2π -periodic function f can be written as a **Fourier series**

$$
f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos(nt) + b_n \sin(nt)).
$$

Technical detail $^\ast\colon f$ needs to be, e.g., piecewise smooth.

Also, if *t* is a discontinuity of *f*, then the Fourier series converges to the average $\frac{f(t^{-})+f(t^{+})}{2}$. 2 .

The **Fourier coefficients** a_n , b_n are unique and can be computed as

$$
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt, \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt.
$$

Comment. Another common way to write Fourier series is $f(t) = \sum_{n=0}^{\infty} c_n e^{int}$. $n = -\infty$

These two ways are equivalent; we can convert between them using Euler's identity $e^{int} = \cos(nt) + i \sin(nt).$