Sketch of Lecture 18

Definition 106. Let L > 0. f(t) is **L**-periodic if f(t+L) = f(t) for all t. The smallest such L is called the (fundamental) period of f.

Example 107. The fundamental period of $\cos(nt)$ is $2\pi/n$.

Example 108. The trigonometric functions $\cos(nt)$ and $\sin(nt)$ are 2π -periodic for any integer n. And so are their linear combinations. (In other words, 2π -periodic functions form a vector space.)

Example 109. Find the Fourier series of the 2π -periodic function f(t) defined by

Solution. We compute $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \mathrm{d}t = 0$, as well as

$$\begin{aligned} a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt = \frac{1}{\pi} \bigg[-\int_{-\pi}^{0} \cos(nt) dt + \int_{0}^{\pi} \cos(nt) dt \bigg] = 0 \\ b_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = \frac{1}{\pi} \bigg[-\int_{-\pi}^{0} \sin(nt) dt + \int_{0}^{\pi} \sin(nt) dt \bigg] = \frac{2}{\pi n} [1 - \cos(n\pi)] \\ &= \frac{2}{\pi n} [1 - (-1)^n] = \begin{cases} \frac{4}{\pi n} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}. \end{aligned}$$

In conclusion, $f(t) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(nt) = \frac{4}{\pi} \left(\sin(t) + \frac{1}{3} \sin(3t) + \frac{1}{5} \sin(5t) + \dots \right).$

Observation. The coefficients a_n are zero for all n if and only if f(t) is odd.

Comment. The value of f(t) for $t = -\pi, 0, \pi$ is irrelevant to the computation of the Fourier series. They are chosen so that f(t) is equal to the Fourier series for all t (recall that, at a jump discontinuity t, the Fourier series converges to the average $\frac{f(t^-) + f(t^+)}{2}$).

Comment. Plot the (sum of the) first few terms of the Fourier series. What do you observe? The "overshooting" is known as the **Gibbs phenomenon**: https://en.wikipedia.org/wiki/Gibbs_phenomenon

Comment. Set $t = \frac{\pi}{2}$ in the Fourier series we just computed, to get Leibniz' series $\pi = 4[1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ...]$. For such an alternating series, the error made by stopping at the term 1/n is on the order of 1/n. To compute the 768 digits of π to get to the Feynman point (3.14159265...721134999999...), we would (roughly) need $1/n < 10^{-768}$, or $n > 10^{768}$. That's a lot of terms! (Roger Penrose, for instance, estimates that there are about 10^{80} atoms in the observable universe.)

Remark. Convergence of such series is not obvious! Recall, for instance, that the (odd part of) the harmonic series $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$ diverges.

There is nothing special about 2π -periodic functions considered last time (except that $\cos(t)$ and $\sin(t)$ have fundamental period 2π). Note that $\cos(\pi t/L)$ and $\sin(\pi t/L)$ have period 2L.

If f(t) has period 2L, then $\tilde{f}(x) := f\left(\frac{L}{\pi}t\right)$ has period 2π . Therefore Theorem 105 implies the following:

Theorem 110. Every^{*} 2L-periodic function f can be written as a **Fourier series**

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right).$$

Technical detail*: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity, then the Fourier series converges to the average $\frac{f(t^-) + f(t^+)}{2}$.

The Fourier coefficients a_n , b_n are unique and can be computed as

$$a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos\left(\frac{n\pi t}{L}\right) dt, \qquad b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin\left(\frac{n\pi t}{L}\right) dt.$$

Example 111. Find the Fourier series of the 2-periodic function $g(t) = \begin{cases} -1 & \text{for } t \in (-1,0) \\ +1 & \text{for } t \in (0,1) \\ 0 & \text{for } t = -1,0,1 \end{cases}$.

Solution. Instead of computing from scratch, we can use the fact that $g(t) = f(\pi t)$, with f as in the previous example, to get $g(t) = f(\pi t) = \sum_{\substack{n=1 \\ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi t)$.

Theorem 112. If f(t) is continuous and $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right)$, then* $f'(t) = \sum_{n=1}^{\infty} \left(\frac{n\pi t}{L} b_n \cos\left(\frac{n\pi t}{L}\right) - \frac{n\pi}{L} a_n \sin\left(\frac{n\pi t}{L}\right) \right)$ (i.e., we can differentiate termwise).

Technical detail*: f' needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).

Example 113. Let h(t) be the 2-periodic function with $h(t) = \begin{cases} -t & \text{for } t \in (-1,0) \\ +t & \text{for } t \in (0,1) \end{cases}$. Compute the Fourier series of h(t).

Solution. We could just use the integral formulas to compute a_n and b_n . Since h(t) is even (plot it!), we will find that $b_n = 0$. Computing a_n is left as an exercise.

Solution. Note that h(t) is continuous and h'(t) = g(t), with g(t) as in Example 111. Hence, we can apply Theorem 112 to conclude

$$h'(t) = g(t) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi t) \implies h(t) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \left(-\frac{1}{\pi n}\right) \cos(n\pi t) + C,$$

where $C = \frac{a_0}{2} = \frac{1}{2} \int_{-1}^{1} h(t) dt = \frac{1}{2}$ is the constant of integration. Thus, $h(t) = \frac{1}{2} - \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi^2 n^2} \cos(n\pi t)$.

Armin Straub straub@southalabama.edu **Remark.** Note that t = 0 in the last Fourier series, gives us $\frac{\pi^2}{8} = \frac{1}{1} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$ As an exercise, you can try to find from here the fact that $\sum_{n \ge 1} \frac{1}{n^2} = \frac{\pi^2}{6}$. Similarly, we can use Fourier series to find that $\sum_{n \ge 1} \frac{1}{n^4} = \frac{\pi^4}{90}$. Just for fun. These are the values $\zeta(2)$ and $\zeta(4)$ of the Riemann zeta function $\zeta(s)$. No such evaluations are known for $\zeta(3), \zeta(5), \dots$ and we don't even know (for sure) whether these are rational numbers. Nobody believes these to be rational numbers, but it was only in 1978 that Apéry proved that $\zeta(3)$ is not a rational number.

Example 114. (caution!) The function g(t), from Example 111, is not continuous. For all values, except the discontinuities, we have g'(t) = 0. On the other hand, differentiating the Fourier series termwise, results in $4\sum_{n \text{ odd}} \cos(n\pi t)$, which diverges for most values of t (that's easy to check for t = 0). This illustrates that we cannot apply Theorem 112 because of the missing continuity.

[The issues we are facing here can be fixed by generalizing the notion of function to distributions. (Maybe you have heard of the Dirac delta "function".)]

Fourier series and linear differential equations

In the following examples, we look at inhomogeneous linear DEs p(D)y = f(t) where f(t) is a periodic function that can be expressed as a Fourier series.

Example 115. Consider the linear DE $my'' + ky = \cos(\omega t)$. For which (external) frequencies ω does resonance occur?

Solution. The roots of $p(D) = mD^2 + k$ are $\pm i\sqrt{k/m}$. Correspondingly, the solutions of the homogeneous equation my'' + ky = 0 are combinations of $\cos(\omega_0 t)$ and $\sin(\omega_0 t)$, where $\omega_0 = \sqrt{k/m}$ (ω_0 is called the **natural frequency** of the DE). Resonance occurs in the case $\omega = \omega_0$ (overlapping roots).

Review. If $\omega \neq \omega_0$, then there is particular solution of the form $y_p(t) = A\cos(\omega t) + B\sin(\omega t)$ (for specific values of A and B). The general solution is $y(t) = A\cos(\omega t) + B\sin(\omega t) + C_1\cos(\omega_0 t) + C_2\sin(\omega_0 t)$, which is a bounded function of t. In contrast, if $\omega = \omega_0$, then general solution is $y(t) = (C_1 + At)\cos(\omega_0 t) + (C_2 + Bt)\sin(\omega_0 t)$ and this function is unbounded.

Comment. The inhomogeneous equation my'' + ky = F(t) describes the motion of a mass m on a spring with spring constant k under the influence of an external force F(t).

Example 116. A mass-spring system is described by the DE $2y'' + 32y = \sum_{n=1}^{\infty} \frac{\cos(n\omega t)}{n^2 + 1}$.

For which ω does resonance occur?

Solution. The roots of $p(D) = 2D^2 + 32$ are $\pm 4i$, so that the natural frequency is 4. Resonance therefore occurs if 4 equals $n\omega$ for some $n \in \{1, 2, 3, ...\}$. Equivalently, resonance occurs if $\omega = 4/n$ for some $n \in \{1, 2, 3, ...\}$.

Example 117. A mass-spring system is described by the DE $my'' + y = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{nt}{3}\right)$.

For which m does resonance occur?

Solution. The roots of $p(D) = mD^2 + 1$ are $\pm i/\sqrt{m}$, so that that the natural frequency is $1/\sqrt{m}$. Resonance therefore occurs if $1/\sqrt{m} = n/3$ for some $n \in \{1, 2, 3, ...\}$. Equivalently, resonance occurs if $m = 9/n^2$ for some $n \in \{1, 2, 3, ...\}$.