Definition 106. Let $L > 0$. $f(t)$ is *L*-periodic if $f(t + L) = f(t)$ for all *t*. The smallest such *L* is called the (fundamental) period of *f*.

Example 107. The fundamental period of $\cos(nt)$ is $2\pi/n$.

Example 108. The trigonometric functions $\cos(nt)$ and $\sin(nt)$ are 2π -periodic for any integer *n*. And so are their linear combinations. (In other words, 2π -periodic functions form a vector space.)

Example 109. Find the Fourier series of the 2π -periodic function $f(t)$ defined by

Solution. We compute $a_0 = \frac{1}{\pi} \int_0^{\pi} f(t) dt$ $\pi J_{-\pi}^{\quad \nu \ (\cdot \)}$ Z $-\pi$ $\int_0^\pi f(t)\mathrm{d}t$ $=$ 0 , as well as

$$
a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt = \frac{1}{\pi} \Big[-\int_{-\pi}^{0} \cos(nt) dt + \int_{0}^{\pi} \cos(nt) dt \Big] = 0
$$

\n
$$
b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt = \frac{1}{\pi} \Big[-\int_{-\pi}^{0} \sin(nt) dt + \int_{0}^{\pi} \sin(nt) dt \Big] = \frac{2}{\pi n} [1 - \cos(n\pi)]
$$

\n
$$
= \frac{2}{\pi n} [1 - (-1)^n] = \begin{cases} \frac{4}{\pi n} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}.
$$

In conclusion, $f(t) = \sum_{n=1}^{\infty} \frac{4}{n} \sin(nt) = \frac{4}{\pi} \sin(nt)$ $\sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(nt) = \frac{4}{\pi} \left(\sin(t) + \frac{1}{3} \sin(3t) + \frac{1}{5} \right)$ $\frac{1}{3}\sin(3t) + \frac{1}{5}\sin(5t) + ...$ $\frac{1}{5}$ sin(5*t*) + ...).

Observation. The coefficients a_n are zero for all n if and only if $f(t)$ is odd.

Comment. The value of $f(t)$ for $t = -\pi$, $0, \pi$ is irrelevant to the computation of the Fourier series. They are chosen so that *f*(*t*) is equal to the Fourier series for all *t* (recall that, at a jump discontinuity *t*, the Fourier series converges to the average $\frac{f(t^-)+f(t^+)}{2}$). $\frac{(+1)(t)}{2}$).

Comment. Plot the (sum of the) first few terms of the Fourier series. What do you observe? The "overshooting" is known as the Gibbs phenomenon: https://en.wikipedia.org/wiki/Gibbs_phenomenon

Comment. Set $t = \frac{\pi}{2}$ in the Four $\frac{\pi}{2}$ in the Fourier series we just computed, to get Leibniz' series $\pi=4[1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+...].$ For such an alternating series, the error made by stopping at the term $1/n$ is on the order of $1/n$. To compute the 768 digits of π to get to the Feynman point $(3.14159265...721134999999...)$, we would (roughly) need $1/n\!<\!10^{-768}$, or $n\!>\!10^{768}.$ That's a lot of terms! (Roger Penrose, for instance, estimates that there are about 10^{80} atoms in the observable universe.)

Remark. Convergence of such series is not obvious! Recall, for instance, that the (odd part of) the harmonic series $1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \cdots$ diverges.

There is nothing special about 2π -periodic functions considered last time (except that $\cos(t)$ and $\sin(t)$ have fundamental period 2π). Note that $\cos(\pi t/L)$ and $\sin(\pi t/L)$ have period $2L$.

If $f(t)$ has period $2L$, then $\tilde{f}(x) := f\Big(\frac{L}{\pi}t\Big)$ has period 2π . Therefore Theorem [105](#page--1-0) implies the following:

Theorem 110. Every* $2L$ -periodic function f can be written as a **Fourier series**

$$
f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{n\pi t}{L}\right) + b_n \sin\left(\frac{n\pi t}{L}\right) \right).
$$

Technical detail : *f* needs to be, e.g., piecewise smooth.

Also, if *t* is a discontinuity, then the Fourier series converges to the average $\frac{f(t^-)+f(t^+)}{2}$. $\frac{1}{2}$.

The Fourier coefficients a_n , b_n are unique and can be computed as

$$
a_n = \frac{1}{L} \int_{-L}^{L} f(t) \cos\left(\frac{n\pi t}{L}\right) dt, \qquad b_n = \frac{1}{L} \int_{-L}^{L} f(t) \sin\left(\frac{n\pi t}{L}\right) dt.
$$

Example 111. Find the Fourier series of the 2-periodic function $g(t) = \{+1 \text{ for } t \in (0, 1)\}$ $\int -1$ for $t \in (-1)$ $\begin{cases} 0 & \text{for } t = -1 \end{cases}$ -1 for $t \in (-1,0)$ $+1$ for $t \in (0,1)$. 0 for $t = -1, 0, 1$.

Solution. Instead of computing from scratch, we can use the fact that $g(t) = f(\pi t)$, with f as in the previous example, to get $g(t) = f(\pi t) = \sum_{n=1}^{\infty} \frac{4}{n} \sin(n \pi t)$. $\sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi t).$

Theorem 112. If $f(t)$ is continuous and $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(\frac{n \pi t}{L}) + b_n \sin(\frac{n \pi t}{L}) \right)$, then* $f'(t) = \sum_{n=1}^{\infty} \left(\frac{n\pi}{L}b_n\mathrm{cos}\!\left(\frac{n\pi t}{L}\right) - \frac{n\pi}{L}a_n\mathrm{sin}\!\left(\frac{n\pi t}{L}\right)\right)$ (i.e., we can differentiate termwise).

Technical detail*: f' needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).

Example 113. Let $h(t)$ be the 2-periodic function with $h(t) = \begin{cases} -t & \text{for } t \in (-1,0) \\ +t & \text{for } t \in (0,1) \end{cases}$. Corn $-t$ for $t \in (-1,0)$. Compute the $+t$ for $t \in (0,1)$ Fourier series of *h*(*t*).

Solution. We could just use the integral formulas to compute a_n and b_n . Since $h(t)$ is even (plot it!), we will find that $b_n = 0$. Computing a_n is left as an exercise.

Solution. Note that $h(t)$ is continuous and $h'(t)=g(t),$ with $g(t)$ as in Example [111.](#page-1-0) Hence, we can apply Theorem [112](#page-1-1) to conclude

$$
h'(t) = g(t) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi t) \implies h(t) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \left(-\frac{1}{\pi n}\right) \cos(n\pi t) + C,
$$

where $C = \frac{a_0}{2} = \frac{1}{2} \int_{-1}^{1} h(t) dt = \frac{1}{2}$ is the const $\frac{1}{2}$ is the constant of integration. Thus, $h(t) = \frac{1}{2} - \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi^2 n^2} \cos(n \pi t).$

Armin Straub straub@southalabama.edu ³⁸

Remark. Note that $t=0$ in the last Fourier series, gives us $\frac{\pi^2}{8} = \frac{1}{1} + \frac{1}{3^2} + \frac{1}{5^2} + \dots$. As an exercise, you can try to find from here the fact that $\sum_{n\geqslant 1}\frac{1}{n^2}=\frac{\pi^2}{6}$. Simil $\frac{1}{n^2} = \frac{\pi^2}{6}$. Similarly, $\frac{\pi^2}{6}$. Similarly, we can use Fourier series to find that $\sum_{n\geqslant 1}\frac{1}{n^4}=\frac{\pi^2}{90}$. $\frac{1}{n^4} = \frac{\pi^4}{90}.$ $\frac{n}{90}$. Just for fun. These are the values $\zeta(2)$ and $\zeta(4)$ of the Riemann zeta function $\zeta(s)$. No such evaluations are known for $\zeta(3), \zeta(5), \dots$ and we don't even know (for sure) whether these are rational numbers. Nobody believes these to be rational numbers, but it was only in 1978 that Apéry proved that $\zeta(3)$ is not a rational number.

Example 114. (caution!) The function *g*(*t*), from Example [111,](#page-1-0) is not continuous. For all values, except the discontinuities, we have $g'(t)\!=\!0.$ On the other hand, differentiating the Fourier series termwise, results in $4{\sum_{n\ {\rm odd}}\cos(n\pi t)}$, which diverges for most values of t (that's easy to check for $t = 0$). This illustrates that we cannot apply Theorem [112](#page-1-1) because of the missing continuity.

[The issues we are facing here can be fixed by generalizing the notion of function to distributions. (Maybe you have heard of the Dirac delta "function".)]

Fourier series and linear differential equations

In the following examples, we look at inhomogeneous linear DEs $p(D)y = f(t)$ where $f(t)$ is a periodic function that can be expressed as a Fourier series.

Example 115. Consider the linear DE $my'' + ky = cos(\omega t)$. For which (external) frequencies ω does **resonance** occur?

Solution. The roots of $p(D) = mD^2 + k$ are $\pm i\sqrt{k/m}$. Correspondingly, the solutions of the homogeneous equation $my''+ky$ $=$ 0 are combinations of $\cos(\omega_0 t)$ and $\sin(\omega_0 t)$, where ω_0 $=$ $\sqrt{k/m}$ $(\omega_0$ is called the **natural** frequency of the DE). Resonance occurs in the case $\omega = \omega_0$ (overlapping roots).

Review. If $\omega \neq \omega_0$, then there is particular solution of the form $y_p(t) = A \cos(\omega t) + B \sin(\omega t)$ (for specific values of *A* and *B*). The general solution is $y(t) = A \cos(\omega t) + B \sin(\omega t) + C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$, which is a bounded function of t. In contrast, if $\omega = \omega_0$, then general solution is $y(t) = (C_1 + At)\cos(\omega_0 t) +$ $(C_2 + Bt)\sin(\omega_0 t)$ and this function is unbounded.

 ${\sf Comment.\}$ The inhomogeneous equation $my''+ky$ $=F(t)$ describes the motion of a mass m on a spring with spring constant k under the influence of an external force $F(t)$.

Example 116. A mass-spring system is described by the DE $2y'' + 32y = \sum_{n=1}^{\infty} \frac{\cos(n\omega t)}{n^2 + 1}$. $\frac{cos(n\omega)}{n^2+1}$.

For which ω does resonance occur?

Solution. The roots of $p(D) = 2D^2 + 32$ are $\pm 4i$, so that that the natural frequency is 4. Resonance therefore occurs if 4 equals $n\omega$ for some $n \in \{1, 2, 3, ...\}$. Equivalently, resonance occurs if $\omega = 4/n$ for some $n \in \{1, 2, 3, ...\}$.

Example 117. A mass-spring system is described by the DE $my'' + y = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{nt}{3}\right)$. n^2 ^{om} 3 $\sin\left(\frac{nt}{3}\right)$.

For which *m* does resonance occur?

 ${\bf Solution.}$ The roots of $p(D)\!=\!mD^2+1$ are $\pm i/\sqrt{m}$, so that that the natural frequency is $1/\sqrt{m}.$ Resonance therefore occurs if $1/\sqrt{m} = n/3$ for some $n \in \{1, 2, 3, ...\}$. Equivalently, resonance occurs if $m = 9/n^2$ for some $n \in \{1, 2, 3, ...\}.$