
Sketch of Lecture 18 Tue, 10/29/2019

De�nition 106. Let L> 0. f(t) is L-periodic if f(t+L)= f(t) for all t. The smallest such L
is called the (fundamental) period of f .

Example 107. The fundamental period of cos(nt) is 2�/n.

Example 108. The trigonometric functions cos(nt) and sin(nt) are 2�-periodic for any integer n.
And so are their linear combinations. (In other words, 2�-periodic functions form a vector space.)

Example 109. Find the Fourier series of the 2�-periodic function f(t) de�ned by

f(t)=

8>><>>:
¡1; for t2 (¡�; 0),
+1; for t2 (0; �);
0; for t=¡�; 0; �:
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Solution. We compute a0=
1
�

Z
¡�

�

f(t)dt=0, as well as

an =
1
�

Z
¡�

�

f(t)cos(nt)dt= 1
�

�
¡
Z
¡�

0

cos(nt)dt+
Z
0

�

cos(nt)dt
�
=0

bn =
1
�

Z
¡�

�

f(t)sin(nt)dt= 1
�

�
¡
Z
¡�

0

sin(nt)dt+
Z
0

�

sin(nt)dt
�
=

2
�n

[1¡ cos(n�)]

=
2
�n

[1¡ (¡1)n] =
(

4

�n
if n is odd

0 if n is even
:

In conclusion, f(t) =
X
n=1
n odd

1
4
�n

sin(nt) = 4
�

�
sin(t)+ 1

3
sin(3t)+ 1

5
sin(5t)+ :::

�
.

−π π 2π 3π 4π

Observation. The coe�cients an are zero for all n if and only if f(t) is odd.
Comment. The value of f(t) for t=¡�; 0; � is irrelevant to the computation of the Fourier series. They are
chosen so that f(t) is equal to the Fourier series for all t (recall that, at a jump discontinuity t, the Fourier series

converges to the average f(t¡)+ f(t+)

2
).

Comment. Plot the (sum of the) �rst few terms of the Fourier series. What do you observe? The �overshooting�
is known as the Gibbs phenomenon: https://en.wikipedia.org/wiki/Gibbs_phenomenon
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Comment. Set t= �

2
in the Fourier series we just computed, to get Leibniz' series �= 4[1¡ 1

3
+
1

5
¡ 1

7
+ :::].

For such an alternating series, the error made by stopping at the term 1/n is on the order of 1/n. To compute
the 768 digits of � to get to the Feynman point (3.14159265:::721134999999:::), we would (roughly) need
1/n<10¡768, or n>10768. That's a lot of terms! (Roger Penrose, for instance, estimates that there are about
1080 atoms in the observable universe.)
Remark. Convergence of such series is not obvious! Recall, for instance, that the (odd part of) the harmonic
series 1+ 1

3
+
1

5
+
1

7
+ ��� diverges.

There is nothing special about 2�-periodic functions considered last time (except that cos(t) and
sin(t) have fundamental period 2�). Note that cos(�t/L) and sin(�t/L) have period 2L.

If f(t) has period 2L, then f~(x) := f
�
L

�
t
�
has period 2�. Therefore Theorem 105 implies the following:

Theorem 110. Every� 2L-periodic function f can be written as a Fourier series

f(t)=
a0
2
+

X
n=1

1 �
ancos

�
n�t
L

�
+ bnsin

�
n�t
L

��
:

Technical detail�: f needs to be, e.g., piecewise smooth.

Also, if t is a discontinuity, then the Fourier series converges to the average f(t¡)+ f(t+)

2
.

The Fourier coe�cients an, bn are unique and can be computed as

an=
1
L

Z
¡L

L

f(t)cos
� n�t

L

�
dt; bn=

1
L

Z
¡L

L

f(t)sin
� n�t

L

�
dt:

Example 111. Find the Fourier series of the 2-periodic function g(t)=

8>><>>:
¡1 for t2 (¡1; 0)
+1 for t2 (0; 1)
0 for t=¡1; 0; 1

.

Solution. Instead of computing from scratch, we can use the fact that g(t) = f(�t), with f as in the previous

example, to get g(t)= f(�t) =
X
n=1
n odd

1
4
�n

sin(n�t).

Theorem 112. If f(t) is continuous and f(t)= a0
2
+
P

n=1
1 ¡

ancos
¡ n�t

L

�
+ bnsin

¡ n�t
L

��
, then�

f 0(t)=
P

n=1
1 ¡ n�

L
bncos

¡ n�t
L

�
¡ n�

L
ansin

¡ n�t
L

��
(i.e., we can di�erentiate termwise).

Technical detail�: f 0 needs to be, e.g., piecewise smooth (so that it has a Fourier series itself).

Example 113. Let h(t) be the 2-periodic function with h(t)=
�
¡t for t2 (¡1; 0)
+t for t2 (0; 1) . Compute the

Fourier series of h(t).
Solution. We could just use the integral formulas to compute an and bn. Since h(t) is even (plot it!), we will
�nd that bn=0. Computing an is left as an exercise.

Solution. Note that h(t) is continuous and h0(t) = g(t), with g(t) as in Example 111. Hence, we can apply
Theorem 112 to conclude

h0(t)= g(t)=
X
n=1
n odd

1
4
�n

sin(n�t) =) h(t)=
X
n=1
n odd

1
4
�n

�
¡ 1
�n

�
cos(n�t)+C;

where C=
a0
2
=
1
2

Z
¡1

1

h(t)dt=
1
2
is the constant of integration. Thus, h(t)=

1
2
¡

X
n=1
n odd

1
4

�2n2
cos(n�t).
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Remark. Note that t=0 in the last Fourier series, gives us �2

8
=
1

1
+

1

32
+

1

52
+ :::. As an exercise, you can try

to �nd from here the fact that
P

n>1
1

n2
=
�2

6
. Similarly, we can use Fourier series to �nd that

P
n>1

1

n4
=
�4

90
.

Just for fun. These are the values �(2) and �(4) of the Riemann zeta function �(s). No such evaluations are
known for �(3); �(5); ::: and we don't even know (for sure) whether these are rational numbers. Nobody believes
these to be rational numbers, but it was only in 1978 that Apéry proved that �(3) is not a rational number.

Example 114. (caution!) The function g(t), from Example 111, is not continuous. For all values,
except the discontinuities, we have g 0(t)=0. On the other hand, di�erentiating the Fourier series
termwise, results in 4

P
n odd cos(n�t), which diverges for most values of t (that's easy to check

for t=0). This illustrates that we cannot apply Theorem 112 because of the missing continuity.

[The issues we are facing here can be �xed by generalizing the notion of function to distributions. (Maybe you
have heard of the Dirac delta �function�.)]

Fourier series and linear di�erential equations

In the following examples, we look at inhomogeneous linear DEs p(D)y = f(t) where f(t) is a
periodic function that can be expressed as a Fourier series.

Example 115. Consider the linear DE my 00+ ky = cos(!t). For which (external) frequencies
! does resonance occur?
Solution. The roots of p(D) =mD2+ k are �i k/m

p
. Correspondingly, the solutions of the homogeneous

equationmy 00+ky=0 are combinations of cos(!0t) and sin(!0t), where !0= k/m
p

(!0 is called the natural
frequency of the DE). Resonance occurs in the case !=!0 (overlapping roots).
Review. If ! =/ !0, then there is particular solution of the form yp(t) = A cos(!t) + B sin(!t) (for speci�c
values of A and B). The general solution is y(t) =A cos(!t) +B sin(!t) +C1cos(!0t) +C2sin(!0t), which
is a bounded function of t. In contrast, if ! = !0, then general solution is y(t) = (C1 + At)cos(!0t) +
(C2+Bt)sin(!0t) and this function is unbounded.

Comment. The inhomogeneous equation my 00+ky=F (t) describes the motion of a mass m on a spring with
spring constant k under the in�uence of an external force F (t).

Example 116. A mass-spring system is described by the DE 2y 00+ 32y=
X
n=1

1
cos(n!t)
n2+1

.

For which ! does resonance occur?
Solution. The roots of p(D) = 2D2 + 32 are �4i, so that that the natural frequency is 4. Resonance
therefore occurs if 4 equals n! for some n 2 f1; 2; 3; :::g. Equivalently, resonance occurs if != 4/n for some
n2f1; 2; 3; :::g.

Example 117. A mass-spring system is described by the DE my 00+ y=
X
n=1

1
1
n2

sin
�
nt
3

�
.

For which m does resonance occur?
Solution. The roots of p(D)=mD2+1 are �i/ m

p
, so that that the natural frequency is 1/ m

p
. Resonance

therefore occurs if 1/ m
p

=n/3 for some n2f1;2;3; :::g. Equivalently, resonance occurs if m=9/n2 for some
n2f1; 2; 3; :::g.
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