Sketch of Lecture 19 Thu, 10/31/2019

Let us revisit the inhomogeneous DE $my''+ky$ $=F(t)$ (which describes, for instance, the motion of a mass m on a spring with spring constant k under the influence of an external force $F(t)$).

We will solve the DE, for periodic forces $F(t)$, by using the Fourier series for $F(t)$. The same approach works likewise for linear equations of higher order, or even systems of equations.

Example 118. Find a particular solution of $2y'' + 32y = F(t)$, with $F(t) = \begin{cases} 10 & \text{if } t \in (0,1) \\ -10 & \text{if } t \in (1,2) \end{cases}$ 10 if $t \in (0, 1)$
 -10 if $t \in (1, 2)$, extended 2-periodically.

Solution.

- From earlier, we already know $F(t) = 10 \sum_{n \text{ odd}} \frac{4}{\pi n} \sin(\pi nt)$. 4 $\frac{4}{\pi n}$ sin($\pi n t$).
- We next solve the equation $2y'' + 32y = \sin(\pi nt)$ for $n = 1, 3, 5, ...$ First, we note that the external frequency is πn , which is never equal to the natural frequency $\omega_0 = 4$. Hence, there exists a particular solution of the form $y_p(t) = A \cos(\pi nt) + B \sin(\pi nt)$. To determine the coefficients A, B, we plug into the DE. Noting that $y_p^{\prime\prime}\!=\!-\pi^2n^2\,y_p$ (why?!), we get

 $2y''_p + 32y_p = (32 - 2\pi^2 n^2)(A\cos(\pi nt) + B\sin(\pi nt)) = \sin(\pi nt).$

We conclude $A=0$ and $B=\frac{1}{32-2\pi^2n^2}$, so $\frac{1}{32 - 2\pi^2 n^2}$, so that $y_p(t) = \frac{\sin(\pi nt)}{32 - 2\pi^2 n^2}$. $32 - 2\pi^2 n^2$.

We combine the particular solutions found in the previous step, to see that

$$
2y'' + 32y = 10 \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(\pi nt) \quad \text{is solved by} \quad y_p = 10 \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \frac{\sin(\pi nt)}{32 - 2\pi^2 n^2}.
$$

Example 119. Find a particular solution of $2y''+32y$ $=$ $F(t)$, with $F(t)$ the 2π -periodic function such that $F(t) = 10t$ for $t \in (-\pi, \pi)$.

Solution.

- The Fourier series of $F(t)$ is $F(t) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{20}{n} \text{sin}(nt)$. [Exercise!]
- \bullet We next solve the equation $2y'' + 32y = \sin(nt)$ for $n = 1, 2, 3, ...$ Note, however, that resonance occurs for $n=4$, so we need to treat that case separately. If $n\neq 4$ then we find, as in the previous example, that $y_p(t) = \frac{\sin(nt)}{32 - 2n^2}$. [See $\frac{\sin(n\ell)}{32-2n^2}$. [See how this fails for $n=4!$]

For $2y'' + 32y = \sin(4t)$, we begin with $y_p = At\cos(4t) + Bt\sin(4t)$. Then $y_p' = (A + 4Bt)\cos(4t) +$ $(B-4At)\sin(4t)$, and $y_p'' = (8B-16At)\cos(4t) + (-8A-16Bt)\sin(4t)$. Plugging into the DE, we get $2y_p''+32y_p\!=\!16B\cos(4t)-16A\sin(4t)\overset{!}{=}\sin(4t)$, and thus $B\!=\!0$, $A\!=\!-\frac{1}{16}$. So, $y_p\!=\!-\,$ $\frac{1}{16}$. So, $y_p = -\frac{1}{16}t\cos(4t)$. $\frac{1}{16}t\cos(4t).$

We combine the particular solutions to get that our DE

$$
2y'' + 32y = -5\sin(4t) + \sum_{\substack{n=1 \ n \neq 4}}^{\infty} (-1)^{n+1} \frac{20}{n} \sin(nt)
$$

is solved by

$$
y_p(t) = \frac{5}{16}t\cos(4t) + \sum_{\substack{n=1\\n \neq 4}}^{\infty} (-1)^{n+1} \frac{20}{n} \frac{\sin(nt)}{32 - 2n^2}.
$$

As in the previous example, this solution cannot really be simplified. Make some plots to appreciate the dominating character of the term resulting from resonance!

Armin Straub Armin Straub $\bf 40$ straub $\bf 40$ Suppose we have a function $f(t)$ which is defined on a finite interval $[0, L]$. Depending on the kind of application, we can extend $f(t)$ to a periodic function in three natural ways; in each case, we can then compute a Fourier series for $f(t)$ (which will agree with $f(t)$ on $[0, L]$).

Comment. Here, we do not worry about the definition of $f(t)$ at specific individual points like $t = 0$ and $t = L$, or at jump discontinuities. Recall that, at a discontinuity, a Fourier series takes the average value.

(a) We can extend $f(t)$ to an *L*-periodic function.

In that case, we obtain the Fourier series $f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos\left(\frac{2\pi nt}{L}\right) + b_n \sin\left(\frac{2\pi nt}{L}\right) \right)$.

-8 -6 -4 -2 0 2 4 6 8

2

4

(b) We can extend $f(t)$ to an even 2L-periodic function.

In that case, we obtain the Fourier cosine series $f(t) = \frac{\tilde{a}_0}{2} + \sum_{n=1}^{\infty} \tilde{a}_n \cos\left(\frac{\pi n t}{L}\right)$. *L* $\left(\frac{1}{2} \right)$

(c) We can extend $f(t)$ to an odd 2L-periodic function.

In that case, we obtain the Fourier sine series $f(t) = \sum_{n=1}^{\infty} \tilde{b}_n \sin\left(\frac{\pi n t}{L}\right)$. *L* $\left(\frac{1}{2} \right)$

Example 120. Consider the function $f(t) = 4 - t^2$, defined for $t \in [0, 2]$.

- (a) Sketch the 2-periodic extension of $f(t)$.
- (b) Sketch the 4-periodic even extension of $f(t)$.
- (c) Sketch the 4-periodic odd extension of $f(t)$.

Solution. The 2-periodic extension as well as the 4-periodic even extension:

Endpoint problems and eigenvalues

Example 121. The IVP (initial value problem) $y'' + 4y = 0$, $y(0) = 0$, $y'(0) = 0$ has the unique solution $y(x) = 0$.

Initial value problems are often used when the problem depends on time. Then, $y(0)$ and $y^{\prime}(0)$ describe the initial configuration at $t = 0$.

For problems which instead depend on spatial variables, such as position, it may be natural to specify values at positions on the boundary (for instance, if $y(x)$ describes the steady-state temperature of a rod at position x , we might know the temperature at the two end points).

The next two examples illustrate that such boundary value problem may or may not have unique solutions.

Example 122. The **BVP** (boundary value problem) $y'' + 4y = 0$, $y(0) = 0$, $y(1) = 0$ has the unique solution $y(x) = 0$.

We know that the general solution to the DE is $y(x) = A\cos(2x) + B\sin(2x)$. The boundary conditions imply $y(0)\!=\!A\frac{!}{=}0$ and, already using that $A\!=\!0$, $y(1)\!=\!B\sin(2)\frac{!}{=}0$ shows that $B\!=\!0$ as well.

Example 123. The BVP $y'' + \pi^2y = 0$, $y(0) = 0$, $y(1) = 0$ is solved by $y(x) = B \sin(\pi x)$ for any value *B*.

This time, the general solution to the DE is $y(x) = A \cos(\pi x) + B \sin(\pi x)$. The boundary conditions imply $y(0)$ $=A$ $\stackrel{!}{=}$ 0 and, using that A $=$ 0 , $y(1)$ $=$ B $\sin(\pi)$ $\stackrel{!}{=}$ 0 . This second condition true for any B .