Review.

- The BVP $y'' + 4y = 0$, $y(0) = 0$, $y(1) = 0$ has the unique solution $y(x) = 0$.
- The BVP $y'' + \pi^2 y = 0$, $y(0) = 0$, $y(1) = 0$ is solved by $y(x) = B \sin(\pi x)$ for any value B .

It is therefore natural to ask: for which λ does the BVP $y'' + \lambda y = 0$, $y(0) = 0$, $y(L) = 0$ have nonzero solutions?

Such solutions are called **eigenfunctions** and λ is the corresponding **eigenvalue.**

Remark. Compare that to our previous use of the term eigenvalue: given a matrix A, we asked: for which λ does $Av - \lambda v = 0$ have nonzero solutions v ? Such solutions were called eigenvectors and λ was the corresponding eigenvalue.

Example 124. Find all eigenfunctions and eigenvalues of $y'' + \lambda y = 0$, $y(0) = 0$, $y(L) = 0$.

Such a problem is called an eigenvalue problem.

Solution. The solutions of the DE look different in the cases $\lambda < 0$, $\lambda = 0$, $\lambda > 0$, so we consider them individually.

- $\lambda = 0$. Then $y(x) = Ax + B$ and $y(0) = y(L) = 0$ implies that $y(x) = 0$. No eigenfunction here.
- $\bm{\lambda} < \bm{0}.$ Write $\lambda \!=\! -\rho^2.$ Then $y(x)\!=\!Ae^{\rho x}\!+\!Be^{-\rho x}.$ $y(0)\!=\!A\!+\!B\frac{!}{=}0$ implies $B\!=\!-A.$ Using that, we get $y(L) = A(e^{\rho L} - e^{-\rho L}) \stackrel{!}{=} 0$. For eigenfunctions we need $A \neq 0$, so $e^{\rho L} = e^{-\rho L}$ which implies $\rho L = -\rho L$.
This cannot happen since $\rho \neq 0$ and $L \neq 0$. Again, no eigenfunctions in this case.
- $\boldsymbol{\lambda} > 0.$ Write $\lambda \!=\! \rho^2.$ Then $y(x) \!=\! A\cos(\rho x) + B\sin(\rho x).$ $y(0) \!=\! A\frac{!}{=}0.$ Using that, $y(L) \!=\! B\sin(\rho L)\frac{!}{=}0.$ Since $B\neq 0$ for eigenfunctions, we need $\sin(\rho L)=0.$ This happens if $\rho L=n\pi$ for $n=0,\,1,\,2,\,...$ Consequently, we do find the eigenfunctions $y_n(x) = \sin \frac{n \pi x}{L}$, $n = 1, 2$ $\frac{\pi x}{L}$, $n = 1, 2, 3, ...$, with eigenvalue $\lambda = \left(\frac{n\pi}{L}\right)^2$.

Example 125. Suppose that a rod of length *L* is compressed by a force *P* (with ends being pinned [not clamped] down). We model the shape of the rod by a function $y(x)$ on some interval $[0,L]$. The theory of elasticity predicts that, under certain simplifying assumptions, *y* should satisfy $EI y'' + Py = 0, y(0) = 0, y(L) = 0.$

Here, EI is a constant modeling the inflexibility of the rod $(E,$ known as Young's modulus, depends on the material, and *I* depends on the shape of cross-sections (it is the area moment of inertia)).

In other words, $y'' + \lambda y = 0$, $y(0) = 0$, $y(L) = 0$, with $\lambda = \frac{P}{EI}$. *EI* .

The fact that there is no nonzero solution unless $\lambda = \left(\frac{\pi n}{L}\right)^2$ for some $n = 1, 2, 3, ...$, means that buckling can only occur if $P = \left(\frac{\pi n}{L}\right)^2 EI$. In particular, no buckling occurs for forces less than $\frac{\pi^2 EI}{L^2}$. This $\frac{L}{L^2}$. This is known as the critical load (or Euler load) of the rod.

Comment. This is a very simplified model. In particular, it assumes that the deflections are small. (Technically, the buckled rod in our model is longer than *L*; of course, that's not the case in practice.)

https://en.wikipedia.org/wiki/Euler%27s_critical_load

The heat equation

We wish to describe one-dimensional heat flow.

Comment. If this sounds very specialized, it might help to know that the heat equation is also used, for instance, in probability (Brownian motion), financial math (Black-Scholes), or chemical processes (diffusion equation).

Let $u(x,t)$ describe the temperature at time t at position x.

If we model a heated rod of length L, then $x \in [0, L]$.

Notation. $u(x, t)$ depends on two variables. When taking derivatives, we will use the notations $u_t = \frac{\partial^2}{\partial t^2} u$ and $u_{xx} = \frac{\partial^2}{\partial x^2} u$ for first and higher derivatives. $\frac{\partial^2}{\partial x^2} u$ for first and higher derivatives.

Experience tells us that heat flows from warmer to cooler areas and has an averaging effect.

Make a sketch of some temperature profile $u(x, t)$ for fixed t .

As t increases, we expect maxima (where u_{xx} < 0) of that profile to flatten out (which means that u_t < 0); similarly, minima (where u_{xx} > 0) should go up (meaning that u_t > 0). The simplest relationship between u_t and u_{xx} which conforms with our expectation is $u_t = k u_{xx}$, with $k > 0$.

(heat equation)

 $u_t = k u_{xx}$

Note that the heat equation is a linear and homogeneous **partial differential equation**.

In particular, the principle of superposition holds: if u_1 and u_2 solve the heat equation, then so does $c_1u_1 + c_2u_2$.

Higher dimensions. In higher dimensions, the heat equation takes the form $u_t = k(u_{xx} + u_{yy})$ or $u_t =$ $k(u_{xx} + u_{yy} + u_{zz})$. Note that $\Delta u = u_{xx} + u_{yy} + u_{zz}$ is the Laplace operator you may know from Calculus III. The Laplacian Δu is also often written as $\Delta u = \nabla^2 u$. The operator $\nabla = (\partial/\partial x, \partial/\partial y)$ is pronounced "nabla" (Greek for a certain harp) or "del" (Persian for heart), and ∇^2 is short for the inner product $\nabla \cdot \nabla$.

Example 126. Note that $u(x,t) = ax + b$ solves the heat equation.

Example 127. To get a feeling, let us find some other solutions to $u_t = u_{xx}$ (for starters, $k = 1$).

- For instance, $u(x,t) = e^t e^x$ is a solution. [Not a very interesting one for modeling heat flow because it increases exponentially in time.]
- *:::* to be continued *:::* Can you find further solutions?