Review. The heat equation: $u_t = k u_{xx}$

Let us think about what is needed to describe a unique solution of the heat equation.

• Initial condition at t = 0: u(x, 0) = f(x) (IC)

This specifies an initial temperature distribution at time t = 0.

• Boundary condition at x = 0 and x = L: (BC)

Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except possibly at the two ends), we need some condition on the temperature at the ends. For instance:

 \circ u(0,t) = A, u(L,t) = B

This models a rod where one end is kept at temperature A and the other end at temperature B.

$$\circ \quad u_x(0,t) = u_x(L,t) = 0$$

This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.

Important comment. We can always transform the case u(0,t) = A, u(L,t) = B into u(0,t) = u(L,t) = 0 by using the fact that u(t,x) = ax + b solves $u_t = ku_{xx}$. Can you spell this out?

Example 128. (cont'd) To get a feeling, let us find some solutions to $u_t = u_{xx}$.

- u(x,t) = ax + b is a solution.
- For instance, $u(x,t) = e^t e^x$ is a solution. [Not a very interesting one for modeling heat flow because it increases exponentially in time.]
- More interesting are $u(x,t) = e^{-t}\cos(x)$ and $u(x,t) = e^{-t}\sin(x)$.
- More generally, $e^{-n^2t}\cos(nx)$ and $e^{-n^2t}\sin(nx)$ are solutions.

Important observation. This actually reveals a strategy for solving the PDE $u_t = u_{xx}$ with conditions such as:

$$u(0,t) = u(\pi,t) = 0$$
(BC)
$$u(x,0) = f(x), x \in (0,L)$$
(IC)

Namely, the solutions $u_n(x,t) = e^{-n^2 t} \sin(nx)$ all satisfy (BC).

It remains to satisfy (IC). Note that $u_n(x,0) = \sin(nx)$. To find u(x,t) such that u(x,0) = f(x), we can write f(x) as a Fourier sine series (i.e. extend f(x) to a 2π -periodic odd function):

$$f(x) = \sum_{n \ge 1} b_n \sin(nx)$$

Then $u(x,t) = \sum_{n \ge 1} b_n u_n(x,t) = \sum_{n \ge 1} b_n e^{-n^2 t} \sin(nx)$ solves the PDE $u_t = u_{xx}$ with (BC) and (IC).

Example 129. Find the unique solution to:

to:
$$u_t = k u_{xx}$$
 (PDE)
 $u(0,t) = u(L,t) = 0$ (BC)
 $u(x,0) = f(x), x \in (0,L)$ (IC)

Solution.

- We will first look for simple solutions of (PDE)+(BC) (and then we plan to take a combination of such solutions that satisfies (IC) as well). Namely, we look for solutions u(x,t) = X(x)T(t). This approach is called **separation of variables** and it is crucial for solving other PDEs as well.
- Plugging into (PDE), we get X(x)T'(t) = kX''(x)T(t), and so $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)}$

Note that the two sides cannot depend on x (because the right-hand side doesn't) and they cannot depend on t (because the left-hand side doesn't). Hence, they have to be constant. Let's call this constant $-\lambda$. Then, $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)} = \text{const} =: -\lambda$.

We thus have $X'' + \lambda X = 0$ and $T' + \lambda kT = 0$.

- Consider (BC). Note that u(0,t) = X(0)T(t) = 0 implies X(0) = 0.
 [Because otherwise T(t) = 0 for all t, which would mean that u(x,t) is the dull zero solution.]
 Likewise, u(L,t) = X(L)T(t) = 0 implies X(L) = 0.
- So X solves $X'' + \lambda X = 0$, X(0) = 0, X(L) = 0. We know that, up to multiples, the only nonzero solutions are the eigenfunctions $X(x) = \sin(\frac{\pi n}{L}x)$ corresponding to the eigenvalues $\lambda = (\frac{\pi n}{L})^2$, n = 1, 2, 3...
- On the other hand, T solves $T' + \lambda kT = 0$, and hence $T(t) = e^{-\lambda kt} = e^{-\left(\frac{\pi n}{L}\right)^2 kt}$.
- Taken together, we have the solutions $u_n(x,t) = e^{-\left(\frac{\pi n}{L}\right)^2 kt} \sin\left(\frac{\pi n}{L}x\right)$ solving (PDE)+(BC).
- We wish to combine these in such a way that (IC) holds as well. At t = 0, $u_n(x, 0) = \sin(\frac{\pi n}{L}x)$. All of these are 2L-periodic.

Hence, we extend f(x), which is only given on (0, L), to an odd 2L-periodic function (its Fourier sine series!). By making it odd, its Fourier series will only involve sine terms: $f(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{\pi n}{L}x)$.

Consequently, (PDE)+(BC)+(IC) is solved by

$$u(x,t) = \sum_{n=1}^{\infty} b_n u_n(x,t) = \sum_{n=1}^{\infty} b_n e^{-\left(\frac{\pi n}{L}\right)^2 kt} \sin\left(\frac{\pi n}{L}x\right).$$

Example 130. Find the unique solution to: $\begin{array}{c} u_t = u_{xx} \\ u(0,t) = u(1,t) = 0 \\ u(x,0) = 1, \quad x \in (0,1) \end{array}$

Solution. This is the case k = 1, L = 1 and f(x) = 1, $x \in (0, 1)$, of the previous example.

In the final step, we extend f(x) to the 2-periodic odd function of Example 111. In particular, earlier, we have already computed that the Fourier series is

$$f(x) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi x).$$

Hence, $u(x,t) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} e^{-\pi^2 n^2 t} \sin(n\pi x).$

Comment. Note that, for t > 0, the exponential very quickly approaches 0 (because of the $-n^2$ in the exponent), so that we get very accurate approximations with only a handful terms. Make some 3D plots!