
Sketch of Lecture 21 Thu, 11/14/2019

Review. The heat equation: ut= kuxx

Let us think about what is needed to describe a unique solution of the heat equation.

� Initial condition at t=0: u(x; 0)= f(x) (IC)
This speci�es an initial temperature distribution at time t=0.

� Boundary condition at x=0 and x=L: (BC)
Assuming that heat only enters/exits at the boundary (think of our rod as being insulated, except possibly
at the two ends), we need some condition on the temperature at the ends. For instance:

� u(0; t)=A, u(L; t)=B

This models a rod where one end is kept at temperatureA and the other end at temperatureB.

� ux(0; t)= ux(L; t)= 0

This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.

Important comment. We can always transform the case u(0; t)=A, u(L; t)=B into u(0; t)=u(L; t)= 0 by
using the fact that u(t; x)= ax+ b solves ut= kuxx. Can you spell this out?

Example 128. (cont'd) To get a feeling, let us �nd some solutions to ut=uxx.

� u(x; t)= ax+ b is a solution.

� For instance, u(x; t)= etex is a solution.
[Not a very interesting one for modeling heat �ow because it increases exponentially in time.]

� More interesting are u(x; t)= e¡tcos(x) and u(x; t)= e¡tsin(x).

� More generally, e¡n
2tcos(nx) and e¡n

2tsin(nx) are solutions.

Important observation. This actually reveals a strategy for solving the PDE ut=uxx with conditions such as:

u(0; t)=u(�; t)= 0 (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

Namely, the solutions un(x; t)= e¡n
2tsin(nx) all satisfy (BC).

It remains to satisfy (IC). Note that un(x;0)= sin(nx). To �nd u(x; t) such that u(x;0)= f(x), we can write
f(x) as a Fourier sine series (i.e. extend f(x) to a 2�-periodic odd function):

f(x)=
X
n>1

bnsin(nx)

Then u(x; t)=
X
n>1

bnun(x; t)=
X
n>1

bne¡n
2tsin(nx) solves the PDE ut=uxx with (BC) and (IC).
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Example 129. Find the unique solution to:
ut= kuxx (PDE)
u(0; t)= u(L; t)= 0 (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

Solution.

� We will �rst look for simple solutions of (PDE)+(BC) (and then we plan to take a combination of such
solutions that satis�es (IC) as well). Namely, we look for solutions u(x; t) =X(x)T (t). This approach
is called separation of variables and it is crucial for solving other PDEs as well.

� Plugging into (PDE), we get X(x)T 0(t)= kX 00(x)T (t), and so X 00(x)

X(x)
=

T 0(t)

kT (t)
.

Note that the two sides cannot depend on x (because the right-hand side doesn't) and they cannot depend
on t (because the left-hand side doesn't). Hence, they have to be constant. Let's call this constant ¡�.
Then, X

00(x)

X(x)
=

T 0(t)

kT (t)
= const=:¡�.

We thus have X 00+�X =0 and T 0+ �kT =0.

� Consider (BC). Note that u(0; t) =X(0)T (t)= 0 implies X(0)=0.
[Because otherwise T (t)= 0 for all t, which would mean that u(x; t) is the dull zero solution.]
Likewise, u(L; t)=X(L)T (t)= 0 implies X(L)= 0.

� SoX solvesX 00+�X=0,X(0)=0,X(L)=0. We know that, up tomultiples, the only nonzero solutions
are the eigenfunctions X(x)= sin

¡ �n
L
x
�
corresponding to the eigenvalues �=

¡ �n
L

�2
, n=1; 2; 3:::.

� On the other hand, T solves T 0+�kT =0, and hence T (t)= e¡�kt= e
¡
¡ �n
L

�2
kt.

� Taken together, we have the solutions un(x; t) = e
¡
¡ �n
L

�2
ktsin

¡ �n
L
x
�
solving (PDE)+(BC).

� We wish to combine these in such a way that (IC) holds as well.
At t=0, un(x; 0)= sin

¡ �n
L
x
�
. All of these are 2L-periodic.

Hence, we extend f(x), which is only given on (0; L), to an odd 2L-periodic function (its Fourier sine
series!). By making it odd, its Fourier series will only involve sine terms: f(x)=

P
n=1
1 bn sin

¡ �n
L
x
�
.

Consequently, (PDE)+(BC)+(IC) is solved by

u(x; t)=
X
n=1

1
bn un(x; t) =

X
n=1

1
bn e

¡
¡ �n
L

�2
ktsin

�
�n
L
x
�
:

Example 130. Find the unique solution to:
ut= uxx
u(0; t)= u(1; t)= 0
u(x; 0)= 1; x2 (0; 1)

Solution. This is the case k=1, L=1 and f(x)= 1, x2 (0; 1), of the previous example.
In the �nal step, we extend f(x) to the 2-periodic odd function of Example 111. In particular, earlier, we have
already computed that the Fourier series is

f(x) =
X
n=1
n odd

1
4
�n

sin(n�x):

Hence, u(x; t) =
X
n=1
n odd

1
4
�n

e¡�
2n2tsin(n�x).

Comment. Note that, for t>0, the exponential very quickly approaches 0 (because of the¡n2 in the exponent),
so that we get very accurate approximations with only a handful terms.
Make some 3D plots!
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