
Sketch of Lecture 22 Tue, 11/19/2019

The boundary conditions in the next example model insulated ends.

Example 131. Find the unique solution u(x; t) to:
ut= kuxx (PDE)
ux(0; t)=ux(L; t)= 0 (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

Solution.

� We proceed as before and look for solutions u(x; t)=X(x)T (t) (separation of variables).

Plugging into (PDE), we get X(x)T 0(t)= kX 00(x)T (t), and so X 00(x)

X(x)
=

T 0(t)

kT (t)
= const=:¡�.

We thus have X 00+�X =0 and T 0+ �kT =0.

� From the (BC), i.e. ux(0; t)=X 0(0)T (t)= 0, we get X 0(0)=0.
Likewise, ux(L; t)=X 0(L)T (t) = 0 implies X 0(L)= 0.

� So X solves X 00+�X=0, X 0(0)=0, X 0(L)=0. It is left as a homework to show that, up to multiples,
the only nonzero solutions of this eigenvalue problem areX(x)=cos

¡ �n
L
x
�
corresponding to �=

¡ �n
L

�2
,

n=0; 1; 2; 3:::. [See practice problems.]

� On the other hand (as before), T solves T 0+ �kT =0, and hence T (t)= e¡�kt= e
¡
¡ �n
L

�2
kt.

� Taken together, we have the solutions un(x; t) = e
¡
¡ �n
L

�2
ktcos

¡ �n
L
x
�
solving (PDE)+(BC).

� We wish to combine these in such a way that (IC) holds.
At t=0, un(x; 0)= cos

¡ �n
L
x
�
. All of these are 2L-periodic.

Hence, we extend f(x), which is only given on (0; L), to an even 2L-periodic function (its Fourier cosine
series!). By making it even, its Fourier series only involves cosine terms: f(x)= a0

2
+
P

n=0
1 ancos

¡ �n
L
x
�
.

Note that

an=
1
L

Z
¡L

L

f(x)cos
�
n�x
L

�
dx=

2
L

Z
0

L

f(x)cos
�
n�x
L

�
dx;

where the �rst integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of de�nition.

Consequently, (PDE)+(BC)+(IC) is solved by

u(x; t)=
a0
2
u0(x; t)+

X
n=1

1
anun(x; t)=

a0
2
+

X
n=1

1
an e

¡
¡ �n
L

�2
ktcos

�
�n

L
x
�
;

where

an=
2
L

Z
0

L

f(x)cos
�
n�x
L

�
dx:
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The inhomogeneous heat equation

We next indicate that we can similarly solve the nonhomogeneous heat equation (with nonhomo-
geneous boundary conditions).

Comment. We indicated earlier that

ut= kuxx (PDE)
u(0; t)= a; u(L; t)= b (BC)
u(x; 0)= f(x); x2 (0; L) (IC)

can be solved by realizing that Ax+B solves (PDE).

Indeed, let v(x) = a +
b¡ a
L

x (so that v(0) = a and v(L) = b). We then look for a solution of the form
u(x; t)= v(x)+w(x; t). Note that u(x; t) solves (PDE)+(BC)+(IC) if and only if w(x; t) solves:

wt= kwxx (PDE)
w(0; t)= 0; w(L; t)= 0 (BC*)
w(x; 0)= f(x)¡ v(x); x2 (0; L) (IC)

This the (homogeneous) heat equation that we know how to solve.
v(x) is called the steady-state solution (it does not depend on time!) and w(x; t) the transient solution (note
that w(x; t) and its partial derivatives tend to zero as t!1).

Example 132. Consider the heat �ow problem:
ut=3uxx+4x2 (PDE)
u(0; t)= 1; ux(3; t)=¡5 (BC)
u(x; 0)= f(x); x2 (0; 3) (IC)

Determine the steady-state solution and spell out equations characterizing the transient solution.
Solution. We look for a solution of the form u(x; t) = v(x) +w(x; t), where v(x) is the steady-state solution
and the transient solution w(x; t) (as well as its derivatives) tend to zero as t!1.

� Plugging into (PDE), we get wt=3v 00+3wxx+4x2. Letting t!1, this becomes 0=3v 00+4x2.

� Plugging into (BC), we get w(0; t)+ v(0)=1 and wx(3; t)+ v 0(3)=¡5.
Letting t!1, this becomes v(0)= 1 and v 0(3)=¡5.

� Solving the ODE 0=3v 00+4x2 with boundary conditions v(0)= 1 and v 0(3)=¡5, we �nd

v(x)=

ZZ
¡4
3
x2dxdx=¡1

9
x4+C1+C2x

and therefore the steady-state solution v(x)=¡1

9
x4+1+7x.

On the other hand, the transient solution w(x; t) is characterized as the unique solution to:

wt=3wxx (PDE*)
w(0; t)= 0; wx(3; t)= 0 (BC*)
w(x; 0)= f(x)¡ v(x) (IC*)

We know how to solve this homogeneous heat �ow problem (see practice problems) using separation of variables.
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