
Sketch of Lecture 23 Thu, 11/21/2019

Steady-state temperature

Review. (2D and 3D heat equation) In higher dimensions, the heat equation takes the form
ut= k(uxx+uyy) or ut= k(uxx+uyy+uzz).

Note that �u= uxx+ uyy+uzz is the Laplace operator you may know from Calculus III (more below).

If temperature is steady, then ut= 0. Hence, the steady-state temperature u(x; y) must satisfy
the PDE uxx+uyy=0.

(Laplace equation)

uxx+uyy=0

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions.
Comment. Also known as the �potential equation�; satis�ed by electric/gravitational potential functions.
Recall from Calculus III (if you have taken that class) that the gradient of a scalar function f(x; y) is the vector

�eld F = grad f =rf =
�
fx(x; y)
fy(x; y)

�
. One says that F is a gradient �eld and f is a potential function for F

(for instance, F could be a gravitational �eld with gravitational potential f).

The divergence of a vector �eld G=
�
g(x; y)
h(x; y)

�
is divG= gx+hy. One also writes divG=r �G.

The gradient �eld of a scalar function f is divergence-free if and only if f satis�es the Laplace equation �f =0.
Other notations. �f = divgrad f =r �rf =r2f
Boundary conditions. For steady-state temperatures pro�les, it is natural to prescribe the temperature on the
boundary of a region R�R2 (or R�R3 in the 3D case).
Comment. Gravitational and electrostatic potentials (not in the vacuum) satisfy the Poisson equation uxx+
uyy= f(x; y), the inhomogeneous version of the Laplace equation.

(Dirichlet problem)
uxx+ uyy=0 within region R

u(x; y)= f(x; y) on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values
on the boundary of that region (�Dirichlet boundary conditions�).

In our next example we solve the Dirichlet problem in the case when R is a rectangle.
Important observation. We are using homogeneous boundary conditions for three of the sides. That is actually
no loss of generality.

Indeed, note that in order to solve
uxx+uyy=0 (PDE)
u(x; 0) = f1(x)
u(x; b) = f2(x)
u(0; y) = f3(x)
u(a; y) = f4(x)

(BC)
we can solve the four Dirichlet problems

uxx+uyy=0
u(x; 0) = f1(x)
u(x; b) = 0
u(0; y) = 0
u(a; y) = 0

uxx+uyy=0
u(x; 0) = 0
u(x; b) = f2(x)
u(0; y) = 0
u(a; y) = 0

uxx+ uyy=0
u(x; 0) = 0
u(x; b) = 0
u(0; y) = f3(x)
u(a; y) = 0

uxx+uyy=0
u(x; 0) = 0
u(x; b) = 0
u(0; y) = 0
u(a; y) = f4(x)

and the sum of the four solutions solves the Dirichlet problem we started with.
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Example 133. Find the unique solution u(x; y) to:
uxx+uyy=0 (PDE)
u(x; 0) = f(x)
u(x; b) = 0
u(0; y) = 0
u(a; y) = 0

(BC)

Solution.

� We proceed as before and look for solutions u(x; y)=X(x)Y (y) (separation of variables).

Plugging into (PDE), we get X 00(x)Y (y)+X(x)Y 00(y), and so X 00(x)

X(x)
=¡Y 00(y)

Y (y)
= const :=¡�.

We thus have X 00+�X =0 and Y 00¡�Y =0.

� From the last three (BC), we get X(0)= 0, X(a)= 0, Y (b)= 0.
We ignore the �rst (inhomogeneous) condition for now.

� So X solves X 00+�X =0, X(0)= 0, X(a)= 0.
From earlier, we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are
X(x)= sin

¡ �n
a
x
�
corresponding to �=

¡ �n
a

�2
, n=1; 2; 3:::.

� On the other hand, Y solves Y 00¡ �Y =0, and hence Y (y) =Ae �
p

y+Be¡ �
p

y.

The condition Y (b) = 0 implies that Ae �
p

b+Be¡ �
p

b=0 so that B=¡Ae2 �
p

b.

Hence, Y (y)=A
¡
e �
p

y¡ e¡ �
p

(y¡2b)�.
� Taken together, we have the solutions un(x; y)=sin

¡ �n
a
x
��
e
�n

a
y¡e¡

�n

a
(y¡2b)

�
solving (PDE)+(BC),

with the exception of u(x; 0)= f(x).

� We wish to combine these in such a way that u(x; 0)= f(x) holds as well.

At y=0, un(x; 0)= sin
¡ �n
a
x
�
(1¡ e2�nb/a). All of these are 2a-periodic.

Hence, we extend f(x), which is only given on (0; a), to an odd 2a-periodic function (its Fourier sine
series!). By making it odd, its Fourier series will only involve sine terms: f(x)=

P
n=1
1 bn sin

¡ �n
a
x
�
.

Note that

bn=
1
a

Z
¡a

a

f(x)sin
�
n�x
a

�
dx=

2
a

Z
0

a

f(x)sin
�
n�x
a

�
dx;

where the �rst integral makes reference to the extension of f(x) while the second integral only uses f(x)
on its original interval of de�nition.

Consequently, (PDE)+(BC)+(IC) is solved by

u(x; y) =
X
n=1

1
bn

1¡ e2�nb/a
un(x; y)=

X
n=1

1
bn

1¡ e2�nb/a
sin

�
�n
a
x
��
e
�n

a
y¡ e

¡�n

a
(y¡2b)

�
;

where

bn=
2
a

Z
0

a

f(x)sin
�
n�x
a

�
dx:
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Example 134. Find the unique solution u(x; y) to:
uxx+ uyy=0 (PDE)
u(x; 0) = 1
u(x; 2) = 0
u(0; y) = 0
u(1; y) = 0

(BC)

Solution. This is the special case of the previous example with a=1, b=2 and
f(x)= 1 for x2 (0; 1).
From Example 111, we know that f(x) has the Fourier sine series

f(x)=
X
n=1
n odd

1
4
�n

sin(n�x); x2 (0; 1):

Hence,

u(x; y)=
X
n=1
n odd

1
4
�n

1

1¡ e4�n
sin(�nx)(e�ny¡ e¡�n(y¡4)):

Comment. The temperature at the center is u(1
2
; 1) � 0.0549 (only the �rst

term of the in�nite sum su�ces for this estimate; the �rst three terms su�ce for
9 digits of accuracy).
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