Steady-state temperature

Review. (2D and 3D heat equation) In higher dimensions, the heat equation takes the form $u_t = k(u_{xx} + u_{yy})$ or $u_t = k(u_{xx} + u_{yy} + u_{zz})$.

Note that $\Delta u = u_{xx} + u_{yy} + u_{zz}$ is the Laplace operator you may know from Calculus III (more below).

If temperature is steady, then $u_t = 0$. Hence, the steady-state temperature u(x, y) must satisfy the PDE $u_{xx} + u_{yy} = 0$.

(Laplace equation)

 $u_{xx} + u_{yy} = 0$

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions. **Comment.** Also known as the "potential equation"; satisfied by electric/gravitational potential functions. Recall from Calculus III (if you have taken that class) that the gradient of a scalar function f(x, y) is the vector field $\mathbf{F} = \operatorname{grad} f = \nabla f = \begin{bmatrix} f_x(x, y) \\ f_y(x, y) \end{bmatrix}$. One says that \mathbf{F} is a gradient field and f is a potential function for \mathbf{F} (for instance, \mathbf{F} could be a gravitational field with gravitational potential f).

The divergence of a vector field $G = \begin{bmatrix} g(x, y) \\ h(x, y) \end{bmatrix}$ is div $G = g_x + h_y$. One also writes div $G = \nabla \cdot G$.

The gradient field of a scalar function f is divergence-free if and only if f satisfies the Laplace equation $\Delta f = 0$. Other notations. $\Delta f = \text{div grad } f = \nabla \cdot \nabla f = \nabla^2 f$

Boundary conditions. For steady-state temperatures profiles, it is natural to prescribe the temperature on the boundary of a region $R \subseteq \mathbb{R}^2$ (or $R \subseteq \mathbb{R}^3$ in the 3D case).

Comment. Gravitational and electrostatic potentials (not in the vacuum) satisfy the **Poisson equation** $u_{xx} + u_{yy} = f(x, y)$, the inhomogeneous version of the Laplace equation.

(Dirichlet problem)

 $u_{xx} + u_{yy} = 0$ within region Ru(x, y) = f(x, y) on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region R, and prescribed values on the boundary of that region ("Dirichlet boundary conditions").

In our next example we solve the Dirichlet problem in the case when R is a rectangle.

Important observation. We are using homogeneous boundary conditions for three of the sides. That is actually no loss of generality.

(PDE) $u_{xx} + u_{yy} = 0$ $u(x,0) = f_1(x)$ we can solve the four Dirichlet problems Indeed, note that in order to solve $u(x,b) = f_2(x)$ (BC) $u(0,y) = f_3(x)$ $u(a,y) = f_4(x)$ $u_{xx} + u_{yy} = 0$ $u_{xx} + u_{yy} = 0$ $u_{xx} + u_{yy} = 0$ $u_{xx} + u_{yy} = 0$ u(x,0) = 0 $u(x,0) = f_1(x)$ u(x,0) = 0u(x,0) = 0u(x,b) = 0 $u(x,b) = f_2(x)$ u(x,b) = 0u(x,b) = 0u(0,y) = 0u(0,y) = 0 $u(0,y) = f_3(x)$ u(0, y) = 0u(a, y) = 0u(a, y) = 0u(a, y) = 0 $u(a, y) = f_4(x)$

and the sum of the four solutions solves the Dirichlet problem we started with.

Armin Straub straub@southalabama.edu **Example 133.** Find the unique solution u(x, y) to:

$$u_{xx} + u_{yy} = 0$$
 (PDE)
 $u(x, 0) = f(x)$
 $u(x, b) = 0$
 $u(0, y) = 0$
 $u(a, y) = 0$
(BC)

Solution.

- We proceed as before and look for solutions u(x, y) = X(x)Y(y) (separation of variables). Plugging into (PDE), we get X''(x)Y(y) + X(x)Y''(y), and so $\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = \text{const} =: -\lambda$. We thus have $X'' + \lambda X = 0$ and $Y'' - \lambda Y = 0$.
- From the last three (BC), we get X(0) = 0, X(a) = 0, Y(b) = 0. We ignore the first (inhomogeneous) condition for now.
- So X solves $X'' + \lambda X = 0$, X(0) = 0, X(a) = 0. From earlier, we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are $X(x) = \sin(\frac{\pi n}{a}x)$ corresponding to $\lambda = (\frac{\pi n}{a})^2$, n = 1, 2, 3...
- On the other hand, Y solves $Y'' \lambda Y = 0$, and hence $Y(y) = Ae^{\sqrt{\lambda}y} + Be^{-\sqrt{\lambda}y}$. The condition Y(b) = 0 implies that $Ae^{\sqrt{\lambda}b} + Be^{-\sqrt{\lambda}b} = 0$ so that $B = -Ae^{2\sqrt{\lambda}b}$. Hence, $Y(y) = A(e^{\sqrt{\lambda}y} - e^{-\sqrt{\lambda}(y-2b)})$.
- Taken together, we have the solutions $u_n(x, y) = \sin(\frac{\pi n}{a}x) \left(e^{\frac{\pi n}{a}y} e^{-\frac{\pi n}{a}(y-2b)}\right)$ solving (PDE)+(BC), with the exception of u(x, 0) = f(x).
- We wish to combine these in such a way that u(x,0) = f(x) holds as well. At y = 0, $u_n(x,0) = \sin(\frac{\pi n}{a}x)(1 - e^{2\pi n b/a})$. All of these are 2a-periodic. Hence, we extend f(x), which is only given on (0, a), to an odd 2a-periodic function (its Fourier sine series!). By making it odd, its Fourier series will only involve sine terms: $f(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{\pi n}{a}x)$. Note that

$$b_n = \frac{1}{a} \int_{-a}^{a} f(x) \sin\left(\frac{n\pi x}{a}\right) \mathrm{d}x = \frac{2}{a} \int_{0}^{a} f(x) \sin\left(\frac{n\pi x}{a}\right) \mathrm{d}x$$

where the first integral makes reference to the extension of f(x) while the second integral only uses f(x) on its original interval of definition.

Consequently, (PDE)+(BC)+(IC) is solved by

$$u(x,y) = \sum_{n=1}^{\infty} \frac{b_n}{1 - e^{2\pi nb/a}} u_n(x,y) = \sum_{n=1}^{\infty} \frac{b_n}{1 - e^{2\pi nb/a}} \sin\left(\frac{\pi n}{a}x\right) \left(e^{\frac{\pi n}{a}y} - e^{-\frac{\pi n}{a}(y-2b)}\right),$$
$$b_n = \frac{2}{a} \int_0^a f(x) \sin\left(\frac{n\pi x}{a}\right) dx.$$

where

Example 134. Find the unique solution u(x, y) to:

$$u_{xx} + u_{yy} = 0 \text{ (PDE)} u(x, 0) = 1 u(x, 2) = 0 u(0, y) = 0 u(1, y) = 0 \text{ (BC)}$$

Solution. This is the special case of the previous example with a = 1, b = 2 and f(x) = 1 for $x \in (0, 1)$.

From Example 111, we know that f(x) has the Fourier sine series

$$f(x) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi x), \quad x \in (0, 1).$$

Hence,

$$u(x,y) = \sum_{\substack{n=1\\n \text{ odd}}}^{\infty} \frac{4}{\pi n} \frac{1}{1 - e^{4\pi n}} \sin(\pi n x) (e^{\pi n y} - e^{-\pi n (y-4)}).$$

Comment. The temperature at the center is $u(\frac{1}{2}, 1) \approx 0.0549$ (only the first term of the infinite sum suffices for this estimate; the first three terms suffice for 9 digits of accuracy).

