Review. The heat equation: $u_t = k u_{xx}$

Let us think about what is needed to describe a unique solution of the heat equation.

• Initial condition at $t = 0$: $u(x, 0) = f(x)$ (IC)

This specifies an initial temperature distribution at time $t = 0$.

Boundary condition at $x = 0$ and $x = L$: (BC)

Assuming that heat only enters/exits at the boundary (think of our rod asbeing insulated, except possibly at the two ends), we need some condition on the temperature at the ends. For instance:

 $u(0, t) = A, u(L, t) = B$

This models a rod where one end is kept at temperature A and the other end at temperature B .

•
$$
u_x(0,t) = u_x(L,t) = 0
$$

This models a rod whose ends are insulated as well.

Under such assumptions, our physical intuition suggests that there should be a unique solution.

Important comment. We can always transform the case $u(0,t) = A$, $u(L,t) = B$ into $u(0,t) = u(L,t) = 0$ by using the fact that $u(t, x) = ax + b$ solves $u_t = k u_{xx}$. Can you spell this out?

Example 128. (cont'd) To get a feeling, let us find some solutions to $u_t = u_{xx}$.

- $u(x,t) = ax + b$ is a solution.
- For instance, $u(x,t) = e^t e^x$ is a solution. [Not a very interesting one for modeling heat flow because it increases exponentially in time.]
- More interesting are $u(x,t) = e^{-t}\cos(x)$ and $u(x,t) = e^{-t}\sin(x)$.
- More generally, $e^{-n^2t}\cos(nx)$ and $e^{-n^2t}\sin(nx)$ are solutions.

Important observation. This actually reveals a strategy for solving the PDE $u_t = u_{xx}$ with conditions such as:

$$
u(0,t) = u(\pi, t) = 0
$$
 (BC)

$$
u(x, 0) = f(x), \quad x \in (0, L)
$$
 (IC)

Namely, the solutions $u_n(x,t) = e^{-n^2t} \sin(nx)$ all satisfy (BC).

It remains to satisfy (IC). Note that $u_n(x, 0) = \sin(nx)$. To find $u(x, t)$ such that $u(x, 0) = f(x)$, we can write $f(x)$ as a Fourier sine series (i.e. extend $f(x)$ to a 2π -periodic odd function):

$$
f(x) = \sum_{n \geq 1} b_n \sin(nx)
$$

Then $u(x,t) = \sum b_n u_n(x,t) = \sum b_n e^{-n}$ $n \geqslant 1$ $b_nu_n(x,t) = \sum b_ne^{-n^2t}\sin(nx)$ solves th $n \geqslant 1$ $b_ne^{-n^2t}\sin(nx)$ solves the PDE $u_t\!=\!u_{xx}$ with (BC) and (IC). **Example 129.** Find the unique solution $u(x,t)$ to:

$$
u_t = ku_{xx}
$$
 (PDE)
so: $u(0, t) = u(L, t) = 0$ (BC)
 $u(x, 0) = f(x), \quad x \in (0, L)$ (IC)

Solution.

- We will first look for simple solutions of $(PDE)+(BC)$ (and then we plan to take a combination of such solutions that satisfies (IC) as well). Namely, we look for solutions $u(x,t) = X(x)T(t)$. This approach is called separation of variables and it is crucial for solving other PDEs as well.
- Plugging into (PDE), we get $X(x)T'(t) = kX''(x)T(t)$, and so $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)}$. $kT(t)$.

Note that the two sides cannot depend on *x* (because the right-hand side doesn't) and they cannot depend on *t* (because the left-hand side doesn't). Hence, they have to be constant. Let's call this constant *−*. Then, $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)} = \text{const} =:-\lambda$. We thus have $X'' + \lambda X = 0$ and $T' + \lambda kT = 0$.

• Consider (BC). Note that $u(0,t) = X(0)T(t) = 0$ implies $X(0) = 0$.

- [Because otherwise $T(t) = 0$ for all t, which would mean that $u(x, t)$ is the dull zero solution.] Likewise, $u(L, t) = X(L)T(t) = 0$ implies $X(L) = 0$.
- So X solves $X'' + \lambda X = 0$, $X(0) = 0$, $X(L) = 0$. We know that, up to multiples, the only nonzero solutions are the eigenfunctions $X(x) = \sin(\frac{\pi n}{L}x)$ corresponding to the eigenvalues $\lambda = (\frac{\pi n}{L})^2$, $n = 1, 2, 3....$
- On the other hand, *T* solves $T' + \lambda kT = 0$, and hence $T(t) = e^{-\lambda kt} = e^{-\left(\frac{\pi n}{L}\right)^2kt}$.
- **•** Taken together, we have the solutions $u_n(x,t) = e^{-\left(\frac{\pi n}{L}\right)^2 k t} \sin\left(\frac{\pi n}{L}x\right)$ solving (PDE)+(BC).
- We wish to combine these in such a way that (IC) holds as well. At $t = 0$, $u_n(x, 0) = \sin(\frac{\pi n}{L}x)$. All of these are $2L$ -periodic.

Hence, we extend *f*(*x*), which is only given on (0*; L*), to an odd 2*L*-periodic function (its Fourier sine series!). By making it odd, its Fourier series will only involve sine terms: $f(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{\pi n}{L}x)$.

Consequently, $(PDE)+(BC)+(IC)$ is solved by

$$
u(x,t) = \sum_{n=1}^{\infty} b_n u_n(x,t) = \sum_{n=1}^{\infty} b_n e^{-\left(\frac{\pi n}{L}\right)^2 kt} \sin\left(\frac{\pi n}{L}x\right).
$$

Example 130. Find the unique solution $u(x,t)$ to: $u(0)$ $u_t = u_{xx}$ $u(0,t) = u(1,t) = 0$ $u(x, 0) = 1, \quad x \in (0, 1)$

Solution. This is the case $k = 1$, $L = 1$ and $f(x) = 1$, $x \in (0, 1)$, of the previous example. In the final step, we extend $f(x)$ to the 2-periodic odd function of Example [111.](#page--1-0) In particular, earlier, we have already computed that the Fourier series is

$$
f(x) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n \pi x).
$$

Hence, $u(x,t) = \sum \frac{4}{\pi} e^{-\pi^2 n^2 t} \sin(n\pi x)$. $\sum_{n=1}^{\infty} \frac{4}{\pi n} e^{-\pi^2 n^2 t} \sin(n\pi x).$

Comment. Note that, for *t >*0, the exponential very quickly approaches 0 (because ofthe *−n* 2 in the exponent), so that we get very accurate approximations with only a handful terms. Make some 3D plots!

Notes for Lecture 21 Thu, 11/12/2020

The boundary conditions in the next example model insulated ends.

Example 131. Find the unique solution $u(x,t)$ to: $u_x(x)$ $u_t = k u_{xx}$ (PDE) $u_x(0,t) = u_x(L,t) = 0$ (BC) $u(x, 0) = f(x), \quad x \in (0, L)$ (IC)

Solution.

- We proceed as before and look for solutions $u(x,t) = X(x)T(t)$ (separation of variables). Plugging into (PDE), we get $X(x)T'(t) = kX''(x)T(t)$, and so $\frac{X''(x)}{X(x)} = \frac{T'(t)}{kT(t)} = \text{const} =: -\lambda$. We thus have $X'' + \lambda X = 0$ and $T' + \lambda kT = 0.$
- From the (BC), i.e. $u_x(0,t) = X'(0)T(t) = 0$, we get $X'(0) = 0$. Likewise, $u_x(L, t) = X'(L)T(t) = 0$ implies $X'(L) = 0$.
- So X solves $X'' + \lambda X = 0$, $X'(0) = 0$, $X'(L) = 0$. It is left as a homework to show that, up to multiples, the only nonzero solutions of this eigenvalue problem are $X(x) = \cos(\frac{\pi n}{L}x)$ corresponding to $\lambda = (\frac{\pi n}{L})^2$, $n = 0, 1, 2, 3...$ [See practice problems.]
- **•** On the other hand (as before), *T* solves $T' + \lambda kT = 0$, and hence $T(t) = e^{-\lambda kt} = e^{-\left(\frac{\pi n}{L}\right)^2 kt}$. .
- **•** Taken together, we have the solutions $u_n(x,t) = e^{-\left(\frac{\pi n}{L}\right)^2kt} \cos(\frac{\pi n}{L}x)$ solving (PDE)+(BC).
- We wish to combine these in such a way that (IC) holds. At $t = 0$, $u_n(x, 0) = \cos(\frac{\pi n}{L}x)$. All of these are $2L$ -periodic.

Hence, we extend *f*(*x*), which is only given on (0*; L*), to an even 2*L*-periodic function (its Fourier cosine series!). By making it even, its Fourier series only involves cosine terms: $f(x)$ $=$ $\frac{a_0}{2}$ $+$ $\sum_{n=0}^{\infty} a_n$ $\cos(\frac{\pi n}{L}x)$. Note that

$$
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx = \frac{2}{L} \int_{0}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx,
$$

where the first integral makes reference to the extension of $f(x)$ while the second integral only uses $f(x)$ on its original interval of definition.

Consequently, $(PDE)+(BC)+(IC)$ is solved by

$$
u(x,t) = \frac{a_0}{2}u_0(x,t) + \sum_{n=1}^{\infty} a_n u_n(x,t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-\left(\frac{\pi n}{L}\right)^2 kt} \cos\left(\frac{\pi n}{L}x\right),
$$

$$
a_n = \frac{2}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx
$$

where

$$
a_n = \frac{2}{L} \int_0^L f(x) \cos\left(\frac{n\pi x}{L}\right) dx.
$$

We next indicate that we can similarly solve the inhomogeneous heat equation (with inhomogeneous boundary conditions).

Comment. We indicated earlier that

$$
u_t = ku_{xx}
$$
 (PDE)
\n
$$
u(0, t) = a, \quad u(L, t) = b
$$
 (BC)
\n
$$
u(x, 0) = f(x), \quad x \in (0, L)
$$
 (IC)

can be solved by realizing that $Ax + B$ solves (PDE).

Indeed, let $v(x) = a + \frac{b-a}{L}x$ (so that $v(0) = a$ and $v(L) = b$). We then look for a solution of the form $u(x,t) = v(x) + w(x,t)$. Note that $u(x,t)$ solves (PDE)+(BC)+(IC) if and only if $w(x,t)$ solves:

$$
w_t = k w_{xx}
$$

\n
$$
w(0, t) = 0, \quad w(L, t) = 0
$$

\n
$$
w(x, 0) = f(x) - v(x), \quad x \in (0, L)
$$

\n(IC)

This the (homogeneous) heat equation that we know how to solve.

 $v(x)$ is called the steady-state solution (it does not depend on time!) and $w(x,t)$ the transient solution (note that $w(x, t)$ and its partial derivatives tend to zero as $t \to \infty$).

Example 132. Consider the heat flow problem: $u(0)$ $u_t = 3u_{xx} + 4x^2$ (PDE) $u(0,t) = 1,$ $u_x(3,t) = -5$ (BC) $u(x, 0) = f(x), \quad x \in (0, 3)$ (IC)

Determine the steady-state solution and spell out equations characterizing the transient solution.

Solution. We look for a solution of the form $u(x,t) = v(x) + w(x,t)$, where $v(x)$ is the steady-state solution and where $w(x, t)$ is the transient solution which (together with its derivatives) tends to zero as $t \rightarrow \infty$.

- Plugging into (PDE), we get $w_t = 3v'' + 3w_{xx} + 4x^2$. Letting $t \to \infty$, this becomes $0 = 3v'' + 4x^2$. Note that this also implies that $w_t = 3w_{xx}$.
- Plugging into (BC), we get $v(0) + w(0,t) = 1$ and $v'(3) + w_x(3,t) = -5$. Letting $t \to \infty$, these become $v(0) = 1$ and $v'(3) = -5$.
- Solving the ODE $0 = 3v'' + 4x^2$ with boundary conditions $v(0) = 1$ and $v'(3) = -5$, we find

$$
v(x) = \iint -\frac{4}{3}x^2 dx dx = -\frac{1}{9}x^4 + C_1 + C_2 x
$$

and therefore the steady-state solution $v(x) = -\frac{1}{9}x^4 + 1 + 7x$.

On the other hand, the transient solution $w(x, t)$ is characterized as the unique solution to:

$$
w_t = 3w_{xx}
$$

\n
$$
w(0, t) = 0, \quad w_x(3, t) = 0
$$

\n
$$
w(x, 0) = f(x) - v(x)
$$

\n(IC*)

We know how to solve this homogeneous heat flow problem (see practice problems) using separation of variables.

Steady-state temperature

Review. (2D and 3D heat equation) In higher dimensions, the heat equation takes the form $u_t = k(u_{xx} + u_{yy})$ or $u_t = k(u_{xx} + u_{yy} + u_{zz})$.

Note that $\Delta u = u_{xx} + u_{yy} + u_{zz}$ is the Laplace operator you may know from Calculus III (more below).

If temperature is steady, then $u_t = 0$. Hence, the steady-state temperature $u(x, y)$ must satisfy the PDE $u_{xx} + u_{yy} = 0$.

(Laplace equation)

 $u_{xx} + u_{yy} = 0$

Comment. The Laplace equation is so important that its solutions have their own name: harmonic functions. **Comment.** Also known as the "potential equation"; satisfied by electric/gravitational potential functions. Recall from Calculus III (if you have taken that class) that the gradient of a scalar function $f(x, y)$ is the vector field $\bm{F}\!=\!\mathrm{grad}\,f\!=\!\nabla f\!=\!\left[\begin{array}{c}f_x(x,y) \ f_y(x,y)\end{array}\right]\!$. One says that \bm{F} is a gradient field and f is a potential function for \bm{F} (for instance, \vec{F} could be a gravitational field with gravitational potential \vec{f}).

The divergence of a vector field $\bm{G} \!=\! \left[\begin{array}{l} g(x,y) \ h(x,y) \end{array}\right]$ is $\mathrm{div}\,\bm{G} \!=\! g_x \!+ \!h_y.$ One also writes $\mathrm{div}\,\bm{G} \!=\! \nabla \cdot \bm{G}.$

The gradient field of a scalar function *f* is divergence-free if and only if *f* satisfies the Laplace equation $\Delta f = 0$. Other notations. $\Delta f = \text{div grad } f = \nabla \cdot \nabla f = \nabla^2 f$

Boundary conditions. For steady-state temperatures profiles, it is natural to prescribe the temperature on the boundary of a region $R \subseteq \mathbb{R}^2$ (or $R \subseteq \mathbb{R}^3$ in the 3D case).

Comment. Gravitational and electrostatic potentials (not in the vacuum) satisfy the Poisson equation u_{xx} + $u_{yy} = f(x, y)$, the inhomogeneous version of the Laplace equation.

(Dirichlet problem)

 $u_{xx} + u_{yy} = 0$ within region *R* $u(x, y) = f(x, y)$ on boundary of R

In general. A Dirichlet problem consists of a PDE, that needs to hold within a region *R*, and prescribed values on the boundary of that region ("Dirichlet boundary conditions").

In our next example we solve the Dirichlet problem in the case when *R* is a rectangle.

Important observation. We are using homogeneous boundary conditions for three of the sides. That is actually no loss of generality.

Indeed, note that in order to solve $u(x, 0) = f_1(x)$
 $u(x, b) = f_2(x)$ (BC) $u(0, y) = f_3(y)$ $u(a,y) = f_4(y)$

we can solve the four Dirichlet problems:

The sum of the four solutions then solves the Dirichlet problem we started with.

Example 133. Find the unique solution $u(x, y)$ to:

$$
u_{xx} + u_{yy} = 0 \t (PDE)u(x, 0) = f(x)u(x, b) = 0 \t (BC)u(0, y) = 0 \t (BC)u(a, y) = 0
$$

Solution.

- We proceed as before and look for solutions $u(x, y) = X(x)Y(y)$ (separation of variables). Plugging into (PDE), we get $X''(x)Y(y) + X(x)Y''(y)$, and so $\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = \text{const} =: -\lambda$. W e thus have $X'' + \lambda X = 0$ and $Y'' - \lambda Y = 0$.
- From the last three (BC), we get $X(0) = 0$, $X(a) = 0$, $Y(b) = 0$. We ignore the first (inhomogeneous) condition for now.
- So *X* solves $X'' + \lambda X = 0$, $X(0) = 0$, $X(a) = 0$. From earlier, we know that, up to multiples, the only nonzero solutions of this eigenvalue problem are $X(x) = \sin(\frac{\pi n}{a}x)$ corresponding to $\lambda = (\frac{\pi n}{a})^2$, $n = 1, 2, 3...$
- On the other hand, *Y* solves $Y'' \lambda Y = 0$, and hence $Y(y) = Ae^{\sqrt{\lambda}y} + Be^{-\sqrt{\lambda}y}$. . The condition $Y(b)=0$ implies that $Ae^{\sqrt{\lambda}b}+Be^{-\sqrt{\lambda}b}=0$ so that $B=-Ae^{2\sqrt{\lambda}b}.$. H ence, $Y(y) = A\left(e^{\sqrt{\lambda}y} - e^{-\sqrt{\lambda}(y-2b)}\right).$.
- Taken together, we have the solutions $u_n(x, y) = \sin(\frac{\pi n}{a}x) \left(e^{\frac{\pi n}{a}y} e^{-\frac{\pi n}{a}(y-2b)}\right)$ solving (PDE)+(BC), with the exception of $u(x, 0) = f(x)$.
- We wish to combine these in such a way that $u(x, 0) = f(x)$ holds as well. At $y = 0$, $u_n(x, 0) = \sin(\frac{\pi n}{a}x)(1 - e^{2\pi n b/a})$. All of these are $2a$ -periodic.

Hence, we extend $f(x)$, which is only given on $(0, a)$, to an odd $2a$ -periodic function (its Fourier sine series!). By making it odd, its Fourier series will only involve sine terms: $f(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{\pi n}{a}x).$ Note that

$$
b_n = \frac{1}{a} \int_{-a}^{a} f(x) \sin\left(\frac{n\pi x}{a}\right) dx = \frac{2}{a} \int_{0}^{a} f(x) \sin\left(\frac{n\pi x}{a}\right) dx,
$$

where the first integral makes reference to the extension of $f(x)$ while the second integral only uses $f(x)$ on its original interval of definition.

Consequently, $(PDE)+(BC)$ is solved by

$$
u(x,y) = \sum_{n=1}^{\infty} \frac{b_n}{1 - e^{2\pi nb/a}} u_n(x,y) = \sum_{n=1}^{\infty} \frac{b_n}{1 - e^{2\pi nb/a}} \sin\left(\frac{\pi n}{a}x\right) \left(e^{\frac{\pi n}{a}y} - e^{-\frac{\pi n}{a}(y-2b)}\right),
$$

$$
b_n = \frac{2}{a} \int_0^a f(x) \sin\left(\frac{n\pi x}{a}\right) dx.
$$

where

Example 134. Find the unique solution $u(x, y)$ to:

$$
u_{xx} + u_{yy} = 0 \text{ (PDE)}u(x, 0) = 1u(x, 2) = 0u(0, y) = 0 \text{ (BC)}u(1, y) = 0
$$

Solution. This is the special case of the previous example with $a = 1$, $b = 2$ and $f(x) = 1$ for $x \in (0, 1)$.

From Example [111,](#page--1-0) we know that $f(x)$ has the Fourier sine series

$$
f(x) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \sin(n\pi x), \quad x \in (0, 1).
$$

Hence,

$$
u(x, y) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \frac{1}{1 - e^{4\pi n}} \sin(\pi n x) (e^{\pi n y} - e^{-\pi n (y-4)}).
$$

Comment. The temperature at the center is $u(\frac{1}{2}, 1) \approx 0.0549$ (only the first term of the infinite sum suffices for this estimate; the first three terms suffice for $\frac{0.01}{0.01}$ 9 digits of accuracy).

Example 135. Find the unique solution
$$
u(x, y)
$$
 to:

 0.5

 $\overline{0.2}$ $\overline{04}$ 06 0.8

Solution. Instead of starting from scratch (homework exercise!), let us reuse our computations: Let $v(x, y) = u(x, 2 - y)$. Then $v_{xx} + v_{yy} = 0$, $v(x, 0) = 3$, $v(x, 2) = 0$, $v(0, y) = 0$, $v(1, y) = 0$. Hence, it follows from the previous example that

$$
v(x, y) = 3 \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \frac{1}{1 - e^{4\pi n}} \sin(\pi n x) (e^{\pi n y} - e^{-\pi n (y-4)}).
$$

Consequently,

$$
u(x, y) = v(x, 2 - y) = 3 \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \frac{1}{1 - e^{4\pi n}} \sin(\pi n x) (e^{\pi n (2 - y)} - e^{\pi n (2 + y)}).
$$

Example 136. Find the unique solution $u(x, y)$ to:

$$
u_{xx} + u_{yy} = 0
$$

$$
u(x, 0) = 2, \quad u(x, 2) = 3
$$

$$
u(0, y) = 0, \quad u(1, y) = 0
$$

Solution. Note that $u(x, y)$ is a combination of the solutions to the previous two examples!

$$
u(x,y) = \sum_{\substack{n=1 \ n \text{ odd}}}^{\infty} \frac{4}{\pi n} \frac{\sin(\pi nx)}{1 - e^{4\pi n}} [2(e^{\pi ny} - e^{-\pi n(y-4)}) + 3(e^{\pi n(2-y)} - e^{\pi n(2+y)})].
$$

