Midterm #1 – Practice

MATH 332 — Differential Equations II
Midterm: Thursday, Oct 1

Please print your name:

Problem 1.

- (a) Find the general solution to $y^{(5)} 4y^{(4)} + 5y''' 2y'' = 0$.
- (b) Find the general solution to $y''' y = e^x + 7$.
- (c) Solve $y'' + 2y' + y = 2e^{2x} + e^{-x}$, y(0) = -1, y'(0) = 2.
- (d) Find the general solution to $y'' 4y' + 4y = 3e^{2x}$.
- (e) Consider a homogeneous linear differential equation with constant real coefficients which has order 6. Suppose $y(x) = x^2 e^{2x} \cos(x)$ is a solution. Write down the general solution.
- (f) Write down a homogeneous linear differential equation satisfied by $y(x) = 1 5x^2e^{-2x}$.
- (g) Let y_p be any solution to the inhomogeneous linear differential equation $y'' + xy = e^x$. Find a homogeneous linear differential equation which y_p solves.

 Hint: Do not attempt to solve the DE.

Problem 2.

- (a) Write down a (homogeneous linear) recurrence equation satisfied by $a_n = 3^n 2^n$.
- (b) Write down a (homogeneous linear) recurrence equation satisfied by $a_n = n^2 3^n 2^n$.

Problem 3. Consider the sequence a_n defined by $a_{n+2} = a_{n+1} + 6a_n$ and $a_0 = 3$, $a_1 = -1$.

- (a) Determine the first few terms of the sequence.
- (b) Find a Binet-like formula for a_n .
- (c) Determine $\lim_{n\to\infty} \frac{a_{n+1}}{a_n}$.

Problem 4. Let $M = \begin{bmatrix} 1 & 4 \\ 6 & -1 \end{bmatrix}$.

- (a) Determine the general solution to $a_{n+1} = Ma_n$.
- (b) Determine a fundamental matrix solution to $a_{n+1} = Ma_n$.
- (c) Compute M^n .

Problem 5.

- (a) Write the differential equation y''' + 7y'' 3y' + y = 0 as a system of (first-order) differential equations.
- (b) Consider the following system of initial value problems:

$$y_1'' = 3y_1' + 2y_2' - 5y_1$$

 $y_2'' = y_1' - y_2' + 3y_2$ $y_1(0) = 1$, $y_1'(0) = -2$, $y_2(0) = 3$, $y_2'(0) = 0$

Write it as a first-order initial value problem in the form y' = My, $y(0) = y_0$.

Problem 6. Let $M = \begin{bmatrix} 11 & -2 \\ 3 & 4 \end{bmatrix}$.

- (a) Determine the general solution to y' = My.
- (b) Determine a fundamental matrix solution to y' = My.
- (c) Compute e^{Mx} .
- (d) Solve the initial value problem $\boldsymbol{y}' = M\boldsymbol{y}$ with $\boldsymbol{y}(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.