### Preview: A system of recurrence equations equivalent to the Fibonacci recurrence **Example 56.** We model rabbit reproduction as follows. Each month, every pair of adult rabbits produces one pair of baby rabbit as offspring. Meanwhile, it takes baby rabbits one month to mature to adults. **Comment**. In this simplified model, rabbits always come in male/female pairs and no rabbits die. Though these features might make it sound fairly useless, the model may have some merit when describing populations under ideal conditions (unlimited resources) and over short time (no deaths). **Historical comment.** The question how many rabbits there are after one year, when starting out with a pair of baby rabbits is famously included in the 1202 textbook of the Italian mathematician Leonardo of Pisa, known as Fibonacci. If we start with one baby rabbit pair, how many adult rabbit pairs are there after n months? **Solution**. Let $a_n$ be the number of adult rabbit pairs after n months. Likewise, $b_n$ is the number of baby rabbit pairs. The transition from one month to the next is given by $a_{n+1}=a_n+b_n$ and $b_{n+1}=a_n$ . Using $b_n=a_{n-1}$ (from the second equation) in the first equation, we obtain $a_{n+1}=a_n+a_{n-1}$ . The initial conditions are $a_0 = 0$ and $a_1 = 1$ (the latter follows from $b_0 = 1$ ). It follows that the number $b_n$ of adult rabbit pairs are precisely the Fibonacci numbers $F_n$ . Comment. Note that the transition from one month to the next is described by in matrix-vector form as $$\left[\begin{array}{c}a_{n+1}\\b_{n+1}\end{array}\right] = \left[\begin{array}{c}a_n+b_n\\a_n\end{array}\right] = \left[\begin{array}{cc}1&1\\1&0\end{array}\right] \left[\begin{array}{c}a_n\\b_n\end{array}\right].$$ Writing $\mathbf{a}_n = \begin{bmatrix} a_n \\ b_n \end{bmatrix}$ , this becomes $\mathbf{a}_{n+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \mathbf{a}_n$ with $\mathbf{a}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ . Consequently, $\boldsymbol{a}_n = \left[ \begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]^n \boldsymbol{a}_0 = \left[ \begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]^n \left[ \begin{array}{cc} 0 \\ 1 \end{array} \right].$ **Looking ahead.** Can you see how, starting with the Fibonacci recurrence $F_{n+2} = F_{n+1} + F_n$ , we can arrive at this same system? ## Systems of recurrence equations **Example 57.** (review) Consider the sequence $a_n$ defined by $a_{n+2} = 4a_n - 3a_{n+1}$ and $a_0 = 1$ , $a_1 = 2$ . Determine $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ . **Solution.** The recursion can be written as $p(N)a_n=0$ where $p(N)=N^2+3N-4$ has roots 1,-4. Hence, the general solution is $a_n=C_1+C_2\cdot (-4)^n$ . We can see that both roots have to be involved in the solution (in other words, $C_1\neq 0$ and $C_2\neq 0$ ) because $a_n=C_1$ and $a_n=C_2\cdot (-4)^n$ are not consistent with the initial conditions. We conclude that $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}\!=\!-4$ (because $|-4|\!>\!|1|$ ) **Example 58.** Write the (second-order) RE $a_{n+2} = 4a_n - 3a_{n+1}$ , with $a_0 = 1$ , $a_1 = 2$ , as a system of (first-order) recurrences. **Solution.** Write $b_n = a_{n+1}$ . Then, $a_{n+2}=4a_n-3a_{n+1}$ translates into the first-order system $\begin{cases} a_{n+1}=b_n\\b_{n+1}=4a_n-3b_n \end{cases}$ Let $m{a}_n = \left[ egin{array}{c} a_n \\ b_n \end{array} \right]$ . Then, in matrix form, the RE is $m{a}_{n+1} = \left[ egin{array}{cc} 0 & 1 \\ 4 & -3 \end{array} \right] \!\!\! a_n$ , with $m{a}_0 = \left[ egin{array}{c} 1 \\ 2 \end{array} \right]$ . **Equivalently.** Write $a_n = \begin{bmatrix} a_n \\ a_{n+1} \end{bmatrix}$ . Then we obtain the above system as $$\boldsymbol{a}_{n+1} = \left[ \begin{array}{c} a_{n+1} \\ a_{n+2} \end{array} \right] = \left[ \begin{array}{c} a_{n+1} \\ 4a_n - 3a_{n+1} \end{array} \right] = \left[ \begin{array}{c} 0 & 1 \\ 4 & -3 \end{array} \right] \left[ \begin{array}{c} a_n \\ a_{n+1} \end{array} \right] = \left[ \begin{array}{c} 0 & 1 \\ 4 & -3 \end{array} \right] \boldsymbol{a}_n, \quad \boldsymbol{a}_0 = \left[ \begin{array}{c} 1 \\ 2 \end{array} \right].$$ **Comment.** It follows that $a_n = \begin{bmatrix} 0 & 1 \\ 4 & -3 \end{bmatrix}^n a_0 = \begin{bmatrix} 0 & 1 \\ 4 & -3 \end{bmatrix}^n \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ . Solving (systems of) REs is equivalent to computing powers of matrices! **Comment.** We could also write $a_n = \begin{bmatrix} a_{n+1} \\ a_n \end{bmatrix}$ (with the order of the entries reversed). In that case, the system is $$\boldsymbol{a}_{n+1}\!=\!\left[\begin{array}{c}a_{n+2}\\a_{n+1}\end{array}\right]\!=\!\left[\begin{array}{c}4a_n-3a_{n+1}\\a_{n+1}\end{array}\right]\!=\!\left[\begin{array}{cc}-3&4\\1&0\end{array}\right]\!\left[\begin{array}{c}a_{n+1}\\a_n\end{array}\right]\!=\!\left[\begin{array}{cc}-3&4\\1&0\end{array}\right]\!\boldsymbol{a}_n,\quad\boldsymbol{a}_0\!=\!\left[\begin{array}{c}2\\1\end{array}\right]\!.$$ **Comment.** Recall that the **characteristic polynomial** of a matrix M is $\det(M-\lambda I)$ . Compute the characteristic polynomial of both $M=\left[ \begin{array}{cc} 0 & 1 \\ 4 & -3 \end{array} \right]$ and $M=\left[ \begin{array}{cc} -3 & 4 \\ 1 & 0 \end{array} \right]$ . In both cases, we get $\lambda^2+3\lambda-4$ , which matches the polynomial p(N) (also called characteristic polynomial!) in the previous example. This will always happen and explains why both are referred to as the characteristic polynomial. **Example 59.** Write $a_{n+3} - 4a_{n+2} + a_{n+1} + 6a_n = 0$ as a system of (first-order) recurrences. Solution. Write $m{a}_n\!=\!\left[egin{array}{c} a_n \\ a_{n+1} \\ a_{n+2} \end{array}\right]\!\!$ . Then we obtain the system $$\boldsymbol{a}_{n+1} = \left[ \begin{array}{c} a_{n+1} \\ a_{n+2} \\ a_{n+3} \end{array} \right] = \left[ \begin{array}{c} a_{n+1} \\ a_{n+2} \\ 4a_{n+2} - a_{n+1} - 6a_n \end{array} \right] = \left[ \begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & 4 \end{array} \right] \left[ \begin{array}{c} a_n \\ a_{n+1} \\ a_{n+2} \end{array} \right] = \left[ \begin{array}{cccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -1 & 4 \end{array} \right] \boldsymbol{a}_n.$$ In summary, the RE in matrix form is $a_{n+1} = Ma_n$ with M the matrix above. **Important comment.** Consequently, $\mathbf{a}_n = M^n \mathbf{a}_0$ . #### Solving systems of recurrence equations (systems of REs) The unique solution to $a_{n+1} = Ma_n$ , $a_0 = c$ is $a_n = M^n c$ . We will say that $M^n$ is the fundamental matrix solution to $a_{n+1} = Ma_n$ with $a_0 = I$ (the identity matrix). Comment. Note that $M^n c$ is a linear combination of the columns of $M^n$ . In other words, each column of $M^n$ is a solution to $a_{n+1} = Ma_n$ and $M^nc$ is the general solution. In general, we say that a matrix $\Phi_n$ is a matrix solution to $a_{n+1} = Ma_n$ if $\Phi_{n+1} = M\Phi_n$ . $\Phi_n$ being a matrix solution is equivalent to each column of $\Phi_n$ being a normal (vector) solution. If the general solution of $a_{n+1} = Ma_n$ can be obtained as the linear combination of the columns of $\Phi_n$ , then $\Phi_n$ is a fundamental matrix **solution**. Above, we observed that $\Phi_n = M^n$ is a special fundamental matrix solution. If this is a bit too abstract at this point, have a look at Example 60 below. However, at this point, it remains to figure out how to compute $M^n$ . We will actually proceed the other way around: we construct the general solution of $a_{n+1} = Ma_n$ (see the box below) and then we use that to determine $M^n$ . To solve $a_{n+1} = Ma_n$ , determine the eigenvectors of M. Each $\lambda$ -eigenvector $\boldsymbol{v}$ provides a solution: $\boldsymbol{a}_n = \boldsymbol{v}\lambda^n$ [assuming that $\lambda \neq 0$ ] If there are enough eigenvectors, these combine to the general solution. Why? If $a_n = v\lambda^n$ for a $\lambda$ -eigenvector v, then $a_{n+1} = v\lambda^{n+1}$ and $Ma_n = Mv\lambda^n = \lambda v \cdot \lambda^n = v\lambda^{n+1}$ . Where is this coming from? When solving single linear recurrences, we found that the basic solutions are of the form $cr^n$ where $r \neq 0$ is a root of the characteristic polynomials. To solve $a_{n+1} = Ma_n$ , it is therefore natural to look for solutions of the form $a_n = cr^n$ (where $c = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ ). Note that $a_{n+1} = cr^{n+1} = ra_n$ . Plugging into $a_{n+1} = Ma_n$ we find $cr^{n+1} = Mcr^n$ . Cancelling $r^n$ (just a nonzero number!), this simplifies to rc = Mc. In other words, $a_n = cr^n$ is a solution if and only if c is an r-eigenvector of M. Comment. If there are not enough eigenvectors, then we know what to do as well (at least in principle): instead of looking only for solutions of the type $a_n = v\lambda^n$ , we also need to look for solutions of the type $a_n = (vn + w)\lambda^n$ . Note that this can only happen if an eigenvalue is a repeated root of the characteristic polynomial. 21 **Example 60.** Let $M = \begin{bmatrix} 8 & -10 \\ 5 & -7 \end{bmatrix}$ . - (a) Determine the general solution to $\mathbf{a}_{n+1} = M\mathbf{a}_n$ . - (b) Determine a fundamental matrix solution to $a_{n+1} = Ma_n$ . - (c) Compute $M^n$ . #### Solution. - (a) Recall that each $\lambda$ -eigenvector ${\boldsymbol v}$ of M provides us with a solution: ${\boldsymbol a}_n = {\boldsymbol v} \lambda^n$ We computed in Example 54 that $\left[ \begin{array}{c} 2 \\ 1 \end{array} \right]$ is an eigenvector for $\lambda = 3$ , and $\left[ \begin{array}{c} 1 \\ 1 \end{array} \right]$ is an eigenvector for $\lambda = -2$ . Hence, the general solution is $C_1 \left[ \begin{array}{c} 2 \\ 1 \end{array} \right] 3^n + C_2 \left[ \begin{array}{c} 1 \\ 1 \end{array} \right] (-2)^n$ . - (b) Note that we can write the general solution as $\boldsymbol{a}_n = C_1 {\left[ \begin{array}{c} 2 \\ 1 \end{array} \right]} 3^n + C_2 {\left[ \begin{array}{c} 1 \\ 1 \end{array} \right]} (-2)^n = {\left[ \begin{array}{cc} 2 \cdot 3^n & (-2)^n \\ 3^n & (-2)^n \end{array} \right]} {\left[ \begin{array}{c} C_1 \\ C_2 \end{array} \right]}.$ We call $\Phi_n = \begin{bmatrix} 2 \cdot 3^n & (-2)^n \\ 3^n & (-2)^n \end{bmatrix}$ the corresponding fundamental matrix (solution). Note that our general solution is precisely $\Phi_n c$ with $c = \begin{bmatrix} C_1 \\ C_2 \end{bmatrix}$ Observations. - (a) The columns of $\Phi_n$ are (independent) solutions of the system. - (b) $\Phi_n$ solves the RE itself: $\Phi_{n+1}=M\Phi_n$ . [Spell this out in this example! That $\Phi_n$ solves the RE follows from the definition of matrix multiplication.] - (c) It follows that $\Phi_n = M^n \Phi_0$ . Equivalently, $\Phi_n \Phi_0^{-1} = M^n$ . (See next part!) - (c) Note that $\Phi_0\!=\!\left[ egin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right]$ , so that $\Phi_0^{-1}\!=\!\left[ egin{array}{cc} 1 & -1 \\ -1 & 2 \end{array} \right]$ . It follows that $$M^{n} = \Phi_{n}\Phi_{0}^{-1} = \begin{bmatrix} 2 \cdot 3^{n} & (-2)^{n} \\ 3^{n} & (-2)^{n} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 \cdot 3^{n} - (-2)^{n} & -2 \cdot 3^{n} + 2(-2)^{n} \\ 3^{n} - (-2)^{n} & -3^{n} + 2(-2)^{n} \end{bmatrix}.$$ **Check.** Let us verify the formula for $M^n$ in the cases n=0 and n=1: $$\begin{split} M^0 = & \left[ \begin{array}{cc} 2 - 1 & -2 + 2 \\ 1 - 1 & -1 + 2 \end{array} \right] = \left[ \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right] \\ M^1 = & \left[ \begin{array}{cc} 2 \cdot 3 - (-2) & -2 \cdot 3 + 2(-2) \\ 3 - (-2) & -3 + 2(-2) \end{array} \right] = \left[ \begin{array}{cc} 8 & -10 \\ 5 & -7 \end{array} \right] \end{split}$$ We just saw that being able to compute matrix powers is equivalent to solving systems of recurrences. Indeed, we can use this fact to compute matrix powers. # (a way to compute powers of a matrix M) Compute a fundamental matrix solution $\Phi_n$ of $a_{n+1} = Ma_n$ . Then $$M^n = \Phi_n \Phi_0^{-1}$$ . If you have taken linear algebra classes, you may have learned that matrix powers $M^n$ can be computed by diagonalizing the matrix M. The latter hinges on computing eigenvalues and eigenvectors of M as well. Compare the two approaches!