
Sketch of Lecture 10 Fri, 9/13/2024

(systems of REs) The unique solution to an+1=Man, a0= c is an=Mnc.

� Here, Mn is the fundamental matrix solution to an+1=Man, a0= I (with I the identity matrix).

� If �n is any fundamental matrix solution to an+1=Man, then Mn=�n�0
¡1.

� To construct a fundamental matrix solution �n, we compute eigenvectors:
Given a �-eigenvector v, we have the corresponding solution an=v�n.
If there are enough eigenvectors, we can collect these as columns to obtain �n.

Why? Since �n is a fundamental matrix solution, �n+1=M�n and so �n=Mn�0. Hence, Mn=�n�0
¡1.

Example 61. (review) Write the (second-order) RE an+2=an+1+2an, with a0=0, a1=1, as
a system of (first-order) recurrences.

Solution. If an=
�

an
an+1

�
, then an+1=

�
an+1
an+2

�
=

�
an+1

an+1+2an

�
=

�
0 1
2 1

�
an with a0=

�
0
1

�
.

Example 62. Let M =
�
0 1
2 1

�
.

(a) Determine the general solution to an+1=Man.

(b) Determine a fundamental matrix solution to an+1=Man.

(c) Compute Mn.

(d) Solve an+1=Man, a0=
�
0
1

�
.

Solution.

(a) Recall that each �-eigenvector v of M provides us with a solution: namely, an=v�n.

The characteristic polynomial is: det(A¡�I)=det
��
¡� 1
2 1¡�

��
=�2¡�¡ 2= (�¡ 2)(�+1).

Hence, the eigenvalues are �=2 and �=¡1.

� �=2: Solving
�
¡2 1
2 ¡1

�
v=0, we find that v=

�
1
2

�
is an eigenvector for �=2.

� �=¡1: Solving
�
1 1
2 2

�
v=0, we find that v=

�
¡1
1

�
is an eigenvector for �=¡1.

Hence, the general solution is C1
�
1
2

�
2n+C2

�
¡1
1

�
(¡1)n.

(b) Note that C1
�
1
2

�
2n+C2

�
¡1
1

�
(¡1)n=

�
2n ¡(¡1)n
2 � 2n (¡1)n

��
C1

C2

�
.

Hence, a fundamental matrix solution is �n=
�

2n ¡(¡1)n
2 � 2n (¡1)n

�
.

Comment. Other choices are possible and natural. For instance, the order of the two columns is based
on our choice of starting with �=2. Also, the columns can be scaled by any constant (for instance, using
¡v instead of v for �=¡1 above, we end up with the same�n but with the second column scaled by¡1).
In general, if �n is a fundamental matrix solution, then so is �nC where C is an invertible 2� 2 matrix.

(c) We computeMn=�n�0
¡1 using �n=

�
2n ¡(¡1)n
2 � 2n (¡1)n

�
. Since �0

¡1=
�
1 ¡1
2 1

�¡1
=
1

3

�
1 1
¡2 1

�
, we have

Mn=�n�0
¡1=

�
2n ¡(¡1)n
2 � 2n (¡1)n

�
1
3

�
1 1
¡2 1

�
=
1
3

�
2n+2(¡1)n 2n¡ (¡1)n
2 � 2n¡ 2(¡1)n 2 � 2n+(¡1)n

�
:

(d) an=Mna0=
1

3

�
2n+2(¡1)n 2n¡ (¡1)n
2 � 2n¡ 2(¡1)n 2 � 2n+(¡1)n

��
0
1

�
=
1

3

�
2n¡ (¡1)n
2 � 2n+(¡1)n

�
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Alternative solution of the first part. We saw in Example 61 that this system can be obtained from an+2=

an+1+2an if we set a=
�

an
an+1

�
. In Example 53, we found that this RE has solutions an=2n and an=(¡1)n.

Correspondingly, an+1=
�
0 1
2 1

�
an has solutions an=

"
2n

2n+1

#
and an=

"
(¡1)n
(¡1)n+1

#
.

These combine to the general solution C1
"

2n

2n+1

#
+C2

"
(¡1)n
(¡1)n+1

#
(equivalent to our solution above).

Alternative for last part. Solve the RE from Example 61 to find an=
1

3
(2n¡ (¡1)n). The above is an=

�
an
an+1

�
.

Sage. Once we are comfortable with these computations, we can let Sage do them for us.

>>> M = matrix([[0,1],[2,1]])

>>> M^2�
2 1
2 3

�
Verify that this matrix matches what our formula for Mn produces for n=2. In order to reproduce the general
formula for Mn, we need to first define n as a symbolic variable:

>>> n = var('n')

>>> M^n0BB@ 1
3
� 2n+ 2

3
(¡1)n 1

3
� 2n¡ 1

3
(¡1)n

2
3
� 2n¡ 2

3
(¡1)n 2

3
� 2n+ 1

3
(¡1)n

1CCA
Note that this indeed matches our earlier formula. Can you see how we can read off the eigenvalues and
eigenvectors of M from this formula for Mn? Of course, Sage can readily compute these for us directly using,
for instance, M.eigenvectors_right(). Try it! Can you interpret the output?
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