Example 70. (review) Write the (third-order) differential equation y''' = 3y'' - 2y' + y as a system of (first-order) differential equations.

Solution. If
$$y = \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix}$$
, then $y' = \begin{bmatrix} y' \\ y'' \\ y''' \end{bmatrix} = \begin{bmatrix} y' \\ y'' \\ 3y'' - 2y' + y \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} y \\ y' \\ y'' \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 3 \end{bmatrix} y$.

Example 71. Consider the following system of (second-order) initial value problems:

$$y_1'' = 2y_1' - 3y_2' + 7y_2$$

 $y_2'' = 4y_1' + y_2' - 5y_1$ $y_1(0) = 2$, $y_1'(0) = 3$, $y_2(0) = -1$, $y_2'(0) = 1$

Write it as a first-order initial value problem in the form y' = My, $y(0) = y_0$.

Example 72. Suppose that
$$e^{Mx} = \frac{1}{10} \begin{bmatrix} e^x + 9e^{2x} & 3e^x - 3e^{2x} \\ 3e^x - 3e^{2x} & 9e^x + e^{2x} \end{bmatrix}$$
.

- (a) Without doing any computations, determine M^n .
- (b) What is M?
- (c) Without doing any computations, determine the eigenvalues and eigenvectors of M.
- (d) From these eigenvalues and eigenvectors, write down a simple fundamental matrix solution to y' = My.
- (e) From that fundamental matrix solution, how can we compute e^{Mx} ? (If we didn't know it already...)
- (f) Having computed e^{Mx} , what is a simple check that we can (should!) make?

Solution.

(a) Since e^x and e^{2x} correspond to eigenvalues 1 and 2, we just need to replace these by $1^n = 1$ and 2^n :

$$M^{n} = \frac{1}{10} \begin{bmatrix} 1 + 9 \cdot 2^{n} & 3 - 3 \cdot 2^{n} \\ 3 - 3 \cdot 2^{n} & 9 + 2^{n} \end{bmatrix}$$

- (b) We can simply set n=1 in our formula for M^n , to get $M=\frac{1}{10}\begin{bmatrix} 19 & -3 \\ -3 & 11 \end{bmatrix}$.
- (c) The eigenvalues are 1 and 2 (because e^{Mx} contains the exponentials e^x and e^{2x}). Looking at the coefficients of e^x in the first column of e^{Mx} , we see that $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ is a 1-eigenvector. [We can also look the second column of e^{Mx} , to obtain $\begin{bmatrix} 3 \\ 9 \end{bmatrix}$ which is a multiple and thus equivalent.] Likewise, by looking at the coefficients of e^{2x} , we see that $\begin{bmatrix} 9 \\ -3 \end{bmatrix}$ or, equivalently, $\begin{bmatrix} -3 \\ 1 \end{bmatrix}$ is a 2-eigenvector. Comment. To see where this is coming from, keep in mind that, associated to a λ -eigenvector \boldsymbol{v} , we have the corresponding solution $\boldsymbol{y}(x) = \boldsymbol{v}e^{\lambda x}$ of the DE $\boldsymbol{y}' = M\boldsymbol{y}$. On the other hand, the columns of e^{Mx} are solutions to that DE and, therefore, must be linear combinations of these $\boldsymbol{v}e^{\lambda x}$.
- (d) From the eigenvalues and eigenvectors, we know that $\begin{bmatrix} 1 \\ 3 \end{bmatrix} e^x$ and $\begin{bmatrix} -3 \\ 1 \end{bmatrix} e^{2x}$ are solutions (and that the general solutions consists of the linear combinations of these two). Selecting these as the columns, we obtain the fundamental matrix solution $\Phi(x) = \begin{bmatrix} e^x & -3e^{2x} \\ 3e^x & e^{2x} \end{bmatrix}$.

Comment. The fundamental refers to the fact that the columns combine to the general solution. The matrix solution means that $\Phi(x)$ itself satisfies the DE: namely, we have $\Phi' = M\Phi$. That this is the case is a consequence of matrix multiplication (namely, say, the second column of $M\Phi$ is defined to be M times the second column of Φ ; but that column is a vector solution and therefore solves the DE).

- (e) We can compute e^{Mx} as $e^{Mx} = \Phi(x)\Phi(0)^{-1}$. If $\Phi(x) = \begin{bmatrix} e^x & -3e^{2x} \\ 3e^x & e^{2x} \end{bmatrix}$, then $\Phi(0) = \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}$ and, hence, $\Phi(0)^{-1} = \frac{1}{10} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix}$. It follows that $e^{Mx} = \Phi(x)\Phi(0)^{-1} = \begin{bmatrix} e^x & -3e^{2x} \\ 3e^x & e^{2x} \end{bmatrix} \frac{1}{10} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} = \frac{1}{10} \begin{bmatrix} e^x + 9e^{2x} & 3e^x 3e^{2x} \\ 3e^x 3e^{2x} & 9e^x + e^{2x} \end{bmatrix}.$
- (f) We can check that e^{Mx} equals the identity matrix if we set x=0:

$$\frac{1}{10} \begin{bmatrix} e^x + 9e^{2x} & 3e^x - 3e^{2x} \\ 3e^x - 3e^{2x} & 9e^x + e^{2x} \end{bmatrix} \quad \stackrel{x=0}{\leadsto} \quad \frac{1}{10} \begin{bmatrix} 1+9 & 3-3 \\ 3-3 & 9+1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

This check does not require much effort and can even be done in our head while writing down e^{Mx} . There is really no excuse for not doing it!

Example 73. (homework) Let $M = \begin{bmatrix} -1 & 6 \\ -1 & 4 \end{bmatrix}$.

- (a) Determine the general solution to y' = My.
- (b) Determine a fundamental matrix solution to y' = My.
- (c) Compute e^{Mx} .
- (d) Solve the initial value problem $\boldsymbol{y}' = M\boldsymbol{y}$ with $\boldsymbol{y}(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
- (e) Compute M^n .
- (f) Solve $a_{n+1} = Ma_n$ with $a_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Solution.

- (a) We determine the eigenvectors of M. The characteristic polynomial is: $\det(M-\lambda I) = \det\left(\left[\begin{array}{cc} -1-\lambda & 6 \\ -1 & 4-\lambda \end{array}\right]\right) = (-1-\lambda)(4-\lambda) + 6 = \lambda^2 3\lambda + 2 = (\lambda-1)(\lambda-2)$ Hence, the eigenvalues are $\lambda=1$ and $\lambda=2$.
 - $\lambda = 1$: Solving $\begin{bmatrix} -2 & 6 \\ -1 & 3 \end{bmatrix} v = 0$, we find that $v = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = 1$.
 - $\lambda = 2$: Solving $\begin{bmatrix} -3 & 6 \\ -1 & 2 \end{bmatrix} v = 0$, we find that $v = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda = 2$.

Hence, the general solution is $C_1 \left[egin{array}{c} 3 \\ 1 \end{array} \right] e^x + C_2 \left[egin{array}{c} 2 \\ 1 \end{array} \right] e^{2x}$

- (b) The corresponding fundamental matrix solution is $\Phi = \begin{bmatrix} 3e^x & 2e^{2x} \\ e^x & e^{2x} \end{bmatrix}$.
- (c) Note that $\Phi(0)=\left[\begin{array}{cc} 3 & 2 \\ 1 & 1 \end{array}\right]$, so that $\Phi(0)^{-1}=\left[\begin{array}{cc} 1 & -2 \\ -1 & 3 \end{array}\right]$. It follows that

$$e^{Mx} = \Phi(x)\Phi(0)^{-1} = \left[\begin{array}{cc} 3e^x & 2e^{2x} \\ e^x & e^{2x} \end{array} \right] \left[\begin{array}{cc} 1 & -2 \\ -1 & 3 \end{array} \right] = \left[\begin{array}{cc} 3e^x - 2e^{2x} & -6e^x + 6e^{2x} \\ e^x - e^{2x} & -2e^x + 3e^{2x} \end{array} \right].$$

(d) The solution to the IVP is $\mathbf{y}(x) = e^{Mx} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3e^x - 2e^{2x} & -6e^x + 6e^{2x} \\ e^x - e^{2x} & -2e^x + 3e^{2x} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3e^x + 4e^{2x} \\ -e^x + 2e^{2x} \end{bmatrix}$.

Note. If we hadn't already computed e^{Mx} , we would use the general solution and solve for the appropriate values of C_1 and C_2 . Do it that way as well!

(e) From the first part, it follows that $\mathbf{a}_{n+1} = M\mathbf{a}_n$ has general solution $C_1\begin{bmatrix} 3 \\ 1 \end{bmatrix} + C_2\begin{bmatrix} 2 \\ 1 \end{bmatrix} 2^n$. (Note that $1^n = 1$.)

The corresponding fundamental matrix solution is $\Phi_n = \begin{bmatrix} 3 & 2 \cdot 2^n \\ 1 & 2^n \end{bmatrix}$. As above, $\Phi_0 = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$, so that $\Phi(0)^{-1} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$ and

$$M^n = \Phi_n \Phi_0^{-1} = \left[\begin{array}{ccc} 3 & 2 \cdot 2^n \\ 1 & 2^n \end{array} \right] \left[\begin{array}{ccc} 1 & -2 \\ -1 & 3 \end{array} \right] = \left[\begin{array}{ccc} 3 - 2 \cdot 2^n & -6 + 6 \cdot 2^n \\ 1 - 2^n & -2 + 3 \cdot 2^n \end{array} \right].$$

Important. Compare with our computation for e^{Mx} . Can you see how this was basically the same computation? Write down M^n directly from e^{Mx} .

(f) The (unique) solution is $\boldsymbol{a}_n = M^n \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3-2\cdot 2^n & -6+6\cdot 2^n \\ 1-2^n & -2+3\cdot 2^n \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3+4\cdot 2^n \\ -1+2\cdot 2^n \end{bmatrix}$.

Important. Again, compare with the earlier IVP! Without work, we can write down one from the other.