
Notes for Lecture 14 Mon, 9/23/2024

Phase portraits of autonomous linear differential equations

Example 81. Consider the system dx

dt
= y¡ 5x, dy

dt
=4x¡ 2y.

(a) Determine the general solution.

(b) Make a phase portrait. Can you connect it with the general solution?

(c) Determine all equilibrium points and their stability.

Solution.

(a) Note that we can write this is in matrix form as
�
x
y

�0
=M

�
x
y

�
with M =

�
¡5 1
4 ¡2

�
.

M has ¡1-eigenvector
�
1
4

�
as well as ¡6-eigenvector

�
¡1
1

�
.

Hence, the general solution is
�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t.

(b) We can have Sage make such a plot for us:

>>> x,y = var('x y')
streamline_plot((-5*x+y,4*x-2*y), (x,-4,4), (y,-4,4))

Question. In our plot, we also highlighted two lines through
the origin. Can you explain their significance?
Explanation. The lines correspond to the special solutions
C1
�
1
4

�
e¡t (green) and C2

�
¡1
1

�
e¡6t (orange). For each,

the trajectories consist of points that are multiples of the
vectors

�
1
4

�
and

�
¡1
1

�
, respectively.

Note that each such solution starts at a point on one of
the lines and then �flows� into the origin. (Because e¡t and
e¡6t approach zero for large t.)
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Question. Consider a point like (4; 4). Can you explain why the trajectory through that point doesn't go
somewhat straight to (0; 0) but rather flows nearly parallel the orange line towards the green line?

Explanation. A solution through (4;4) is of the form
�
x(t)
y(t)

�
=C1

�
1
4

�
e¡t+C2

�
¡1
1

�
e¡6t (like any other

solution). Note that, if we increase t, then e¡6t becomes small much faster than e¡t.

As a consequence, we quickly get
�
x(t)
y(t)

�
�C1

�
1
4

�
e¡t, where the right-hand side is on the green line.

(c) The only equilibrium point is (0; 0) and it is asymptotically stable.
We can see this from the phase portrait but we can also determine it from the DE and our solution: first,
solving y¡ 5x=0 and 4x¡ 2y=0 we only get the unique solution x=0; y=0, which means that only
(0;0) is an equilibrium point. On the other hand, the general solution shows that every solution approaches
(0; 0) as t!1 because both e¡t and e¡6t approach 0.
In general. This is typical: if both eigenvalues are negative, then the equilibrium is asymptotically stable.
If at least one eigenvalue is positive, then the equilibrium is unstable.
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Example 82. Consider the system dx

dt
=5x¡ y, dy

dt
=2y¡ 4x.

(a) Determine the general solution.

(b) Make a phase portrait.

(c) Determine all equilibrium points and their stability.

Solution.

(a) Note that we can write this is in matrix form as
�
x
y

�0
=M

�
x
y

�
withM =¡

�
¡5 1
4 ¡2

�
, where the matrix

is exactly ¡1 times what it was in Example 81.

Consequently, M has 1-eigenvector
�
1
4

�
as well as 6-eigenvector

�
¡1
1

�
. (Can you explain why the

eigenvectors are the same and the eigenvalues changed sign?)

Thus, the general solution is
�
x(t)
y(t)

�
=C1

�
1
4

�
et+C2

�
¡1
1

�
e6t.

(b) We again have Sage make the plot for us:

>>> x,y = var('x y')
streamline_plot((5*x-y,-4*x+2*y), (x,-4,4), (y,-4,4))
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Note that the phase portrait is identical to the one in Example 81, except that the arrows are reversed.

(c) The only equilibrium point is (0; 0) and it is unstable.

We can see this from the phase portrait but we can also see it readily from our general solution
�
x(t)
y(t)

�
=

C1
�
1
4

�
et+C2

�
¡1
1

�
e6t because et and e6t go to 1 as t!1.

In general. If at least one eigenvalue is positive, then the equilibrium is unstable.

Example 83. Suppose the system dx

dt
= f(x; y), dy

dt
= g(x; y) has general solution

�
x(t)
y(t)

�
=

C1
�
1
4

�
e¡t+C2

�
¡1
1

�
e6t. Determine all equilibrium points and their stability.

Solution. Clearly, the only constant solution is the zero solution
�
x(t)
y(t)

�
=
�
0
0

�
. Equivalently, the only equilibrium

point is (0; 0).

Since e6t!1 as t!1, we conclude that the equilibrium is unstable. (Note that the solution C2
�
¡1
1

�
e6t

starts arbitrarily near to (0; 0) but always �flows away�).
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Stability of autonomous linear differential equations

Example 84. (spiral source, spiral sink, center point)

(a) Analyze the system d

dt

�
x
y

�
=
�

1 1
¡4 1

��
x
y

�
.

(b) Analyze the system d

dt

�
x
y

�
=¡

�
1 1
¡4 1

��
x
y

�
.

(c) Analyze the system d

dt

�
x
y

�
=
�

0 1
¡4 0

��
x
y

�
.

Solution.

(a)
The eigenvalues are �= 1� 2i and the general solution, in real
form, is:�

x(t)
y(t)

�
=C1

�
cos(2t)
¡2sin(2t)

�
et+C2

�
sin(2t)
2cos(2t)

�
et

In this case, the origin is a spiral source which is an unstable
equilibrium (note that it follows from et!1 as t!1 that all
solutions �flow away� from the origin because they have increasing
amplitude).

Review.
�
cos(t)
sin(t)

�
parametrizes the unit circle.

Similarly,
�

cos(t)
2sin(t)

�
parametrizes an ellipse.
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(b)
The eigenvalues are �=¡1� 2i and the general solution, in real
form, is:�

x(t)
y(t)

�
=C1

�
cos(2t)
¡2sin(2t)

�
e¡t+C2

�
sin(2t)
2cos(2t)

�
e¡t

In this case, the origin is a spiral sink which is an asymptotically
stable equilibrium (note that it follows from e¡t! 0 as t!1
that all solutions �flow into� the origin because their amplitude
goes to zero).

Comment. Note that
�
x(t)
y(t)

�
solves the first system if and only

if
�
x(¡t)
y(¡t)

�
is a solution to the second. Consequently, the phase

portraits look alike but all arrows are reversed.
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(c)
The eigenvalues are �=�2i and the general solution, in real form,
is:�

x(t)
y(t)

�
=C1

�
cos(2t)
¡2sin(2t)

�
+C2

�
sin(2t)
2cos(2t)

�

In this case, the origin is a center point which is a stable equi-
librium (note that the solutions are periodic with period � and
therefore loop around the origin; with each trajectory a perfect
ellipse).
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